Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fleury, Jeremy

  • Google
  • 2
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Integration of metal meshes as transparent conducting electrodes into perovskite solar cells3citations
  • 2021Combining thermal insulation and mobile communication in buildings: influence of laser-treated glazing on microwave propagationcitations

Places of action

Chart of shared publication
Schneider, René
1 / 4 shared
Stranks, Samuel D.
1 / 101 shared
Heier, Jakob
1 / 20 shared
Frohna, Kyle
1 / 35 shared
Roose, Bart
1 / 11 shared
Schüler, Andreas
1 / 2 shared
Ooi, Zher Ying
1 / 2 shared
Ongaro, Chiara
1 / 1 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Schneider, René
  • Stranks, Samuel D.
  • Heier, Jakob
  • Frohna, Kyle
  • Roose, Bart
  • Schüler, Andreas
  • Ooi, Zher Ying
  • Ongaro, Chiara
OrganizationsLocationPeople

article

Combining thermal insulation and mobile communication in buildings: influence of laser-treated glazing on microwave propagation

  • Fleury, Jeremy
Abstract

<jats:title>Abstract</jats:title><jats:p>With the purpose of reducing the heating energy in buildings, it is common practice to install energy-efficient windows to increase the thermal insulation of a façade. These insulating glass units (IGIJ) include a thin silver coating acting as an infrared mirror which reduces the thermal losses that occur through radiation, but at the same time reflects the microwaves for mobile communication. To address this drawback, a specific laser treatment is performed on the silver coating which strongly improves the transmission of microwaves through the window. In this study, the attenuation of microwaves signal was analyzed inside the SolAce unit in the "NEST" research building at the Swiss Federal Laboratories for Materials Science and Technology (EMPA) in Dübendorf. Two configurations (with and without laser-treated glazing) were carried out by interchanging two hinged windows. The results showed a significant improvement in signal strength in the configuration with laser-treated IGUs. A transmission loss contour plot of the SolAce unit showed a highly directional propagation of the wave which suggests that more than two windows should be treated to achieve better mobile communication in the entire unit. The novel patterned coating is thus especially valuable in the building sector to increase the microwave signal for mobile communication. To the best of our knowledge, this is the first implementation and testing of laser-treated coating for energy-efficient glazing in the building sector.</jats:p>

Topics
  • impedance spectroscopy
  • silver
  • glass
  • glass
  • strength