Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Naragunam, A. Shajin

  • Google
  • 2
  • 3
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021A Symmetrically Diminished Interconnected Database Segmentation Framework Using Data Mining8citations
  • 2021Edge Computer-Enabled Internet of Vehicle Applications with Secure Computing and Load Balancing7citations

Places of action

Chart of shared publication
Majumder, Darpan
2 / 2 shared
Ashoka, D. V.
2 / 2 shared
Kumar, S. Mohan
2 / 5 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Majumder, Darpan
  • Ashoka, D. V.
  • Kumar, S. Mohan
OrganizationsLocationPeople

article

A Symmetrically Diminished Interconnected Database Segmentation Framework Using Data Mining

  • Naragunam, A. Shajin
  • Majumder, Darpan
  • Ashoka, D. V.
  • Kumar, S. Mohan
Abstract

<jats:title>Abstract</jats:title><jats:p>Clustering is a series of mathematical learning methods for the exploration of heterogeneous partition structures grouping homogeneous data known as clusters. Clustering has successfully been implemented in many areas, such as medicine, genetics, economics, industry, and so on. We propose the notion of clustering for problems of multifactorial data processing in this article. The aim of a case study is to examine trends in 813 individuals for an issue in occupational medicine. To minimise the dimensionality of the data set, we use the key component analysis as the most widely used statistical method in factor analysis. The natural problems, particularly in the field of medicine, are mostly focused on performance criteria of a stratified kind, while PCA processes only quantitative. In comparison, consistency data are typically binary-coded, initially unnoticeable, quantitative replies. We are therefore introducing a new approach that enables theoretical and practical data to be analysed simultaneously. The idea of this approach is to project important variables on the quantitative feature space. The corresponding Clustering algorithm subspaces are then given an ideal model.</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • clustering