Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Borsup, Jongrak

  • Google
  • 1
  • 8
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Preparation of low-temperature phase MnBi by sintering in vacuum4citations

Places of action

Chart of shared publication
Myint, Hsu Thazin
1 / 1 shared
Tun, Myat Su
1 / 1 shared
Songsiriritthigul, Chomphunuch
1 / 1 shared
Ngamsomrit, Satienrapong
1 / 1 shared
Pinitsoontorn, Supree
1 / 8 shared
Saisopa, Thanit
1 / 1 shared
Songsiriritthigul, Prayoon
1 / 1 shared
Nakajima, Hideki
1 / 7 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Myint, Hsu Thazin
  • Tun, Myat Su
  • Songsiriritthigul, Chomphunuch
  • Ngamsomrit, Satienrapong
  • Pinitsoontorn, Supree
  • Saisopa, Thanit
  • Songsiriritthigul, Prayoon
  • Nakajima, Hideki
OrganizationsLocationPeople

article

Preparation of low-temperature phase MnBi by sintering in vacuum

  • Myint, Hsu Thazin
  • Tun, Myat Su
  • Songsiriritthigul, Chomphunuch
  • Ngamsomrit, Satienrapong
  • Pinitsoontorn, Supree
  • Borsup, Jongrak
  • Saisopa, Thanit
  • Songsiriritthigul, Prayoon
  • Nakajima, Hideki
Abstract

<jats:title>Abstract</jats:title><jats:p>A simple vacuum sintering system was set up to prepare low-temperature phase manganese-bismuth compound (LTP-MnBi). A mixture of Mn and Bi powders with 1:1 atomic ratio was sintered at 275 °C for 3, 6, 9 and 12 hours. The morphology of the sintered materials was investigated by SEM. The sintered product was further identified by XRD and energy dispersive spectroscopy and found to be LTP-MnBi, Mn and Bi. Sintering in vacuum could prevent the formation of manganese oxides. The magnetic properties of the sintered materials were characterized by using a vibrating sample magnetometer. The coercivity and the saturated magnetization were found to be 2.5 kOe and 42.4 emu/g, respectively. The maximum energy product of this magnetic materials was about 1.7 MGOe.</jats:p>

Topics
  • morphology
  • compound
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Manganese
  • magnetization
  • sintering
  • coercivity
  • spectroscopy
  • Bismuth