Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jara, E.

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: Pressure dependence of electronic and vibrational structures4citations

Places of action

Chart of shared publication
Valiente, Rafael
1 / 4 shared
Rodríguez, F.
1 / 4 shared
González, J.
1 / 14 shared
Aguado, F.
1 / 3 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Valiente, Rafael
  • Rodríguez, F.
  • González, J.
  • Aguado, F.
OrganizationsLocationPeople

article

CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: Pressure dependence of electronic and vibrational structures

  • Valiente, Rafael
  • Rodríguez, F.
  • González, J.
  • Aguado, F.
  • Jara, E.
Abstract

<jats:title>Abstract</jats:title><jats:p>The effects of pressure in electronic and vibrational properties of the double perovskite CaCu<jats:sub>3</jats:sub>Ti<jats:sub>4</jats:sub>O<jats:sub>12</jats:sub> have been investigated in the 0-25 GPa range by optical absorption and Raman spectroscopy. Besides a full structural characterization, we aim at unveiling whether the ambient <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn1.gif" xlink:type="simple" /></jats:inline-formula> crystal structure is stable under high pressure conditions and how its giant dielectric permitivity and electronic gap varies with pressure. Results show that there is evidence of neither structural phase transition nor metallization in CaCu<jats:sub>3</jats:sub>Ti<jats:sub>4</jats:sub>O<jats:sub>12</jats:sub> in the explored pressure range. We have observed the eight Raman active modes associated with its <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn2.gif" xlink:type="simple" /></jats:inline-formula> crystal phase and obtained their corresponding frequency and pressure shift. Moreover, the direct electronic band gap (2.20 eV), which is mainly associated with the oxygen-to-copper charge transfer states, increases slightly with pressure at a rate of 13 meV GPa<jats:sup>−1</jats:sup> from 0 to 10 GPa. Above this pressure is almost constant (<jats:italic>E<jats:sub>g</jats:sub></jats:italic> = 2.3 eV). The results highlight the high stability of the compound in its <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn3.gif" xlink:type="simple" /></jats:inline-formula> phase against compression.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • phase
  • Oxygen
  • phase transition
  • copper
  • Raman spectroscopy