People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valiente, Rafael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Exploring the local environment of the engineered nanoclay Mica-4 under hydrothermal conditions using Eu3+ as a luminescent probe
- 2022Glass powder doping of nanocrystal-doped fibres: Challenges and resultscitations
- 2021<tex>$Nd^{3+}$</tex>-doped lanthanum oxychloride nanocrystals as nanothermometerscitations
- 2020CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: Pressure dependence of electronic and vibrational structurescitations
Places of action
Organizations | Location | People |
---|
article
CaCu<sub>3</sub>Ti<sub>4</sub>O<sub>12</sub>: Pressure dependence of electronic and vibrational structures
Abstract
<jats:title>Abstract</jats:title><jats:p>The effects of pressure in electronic and vibrational properties of the double perovskite CaCu<jats:sub>3</jats:sub>Ti<jats:sub>4</jats:sub>O<jats:sub>12</jats:sub> have been investigated in the 0-25 GPa range by optical absorption and Raman spectroscopy. Besides a full structural characterization, we aim at unveiling whether the ambient <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn1.gif" xlink:type="simple" /></jats:inline-formula> crystal structure is stable under high pressure conditions and how its giant dielectric permitivity and electronic gap varies with pressure. Results show that there is evidence of neither structural phase transition nor metallization in CaCu<jats:sub>3</jats:sub>Ti<jats:sub>4</jats:sub>O<jats:sub>12</jats:sub> in the explored pressure range. We have observed the eight Raman active modes associated with its <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn2.gif" xlink:type="simple" /></jats:inline-formula> crystal phase and obtained their corresponding frequency and pressure shift. Moreover, the direct electronic band gap (2.20 eV), which is mainly associated with the oxygen-to-copper charge transfer states, increases slightly with pressure at a rate of 13 meV GPa<jats:sup>−1</jats:sup> from 0 to 10 GPa. Above this pressure is almost constant (<jats:italic>E<jats:sub>g</jats:sub></jats:italic> = 2.3 eV). The results highlight the high stability of the compound in its <jats:inline-formula><jats:tex-math><?CDATA $Im{3}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>I</mml:mi><mml:mi>m</mml:mi><mml:mover accent="true"><mml:mn>3</mml:mn><mml:mo stretchy="false">¯</mml:mo></mml:mover></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="JPCS_1609_1_012005_ieqn3.gif" xlink:type="simple" /></jats:inline-formula> phase against compression.</jats:p>