People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kreupl, Franz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2020Patterning Platinum by Selective Wet Etching of Sacrificial Pt-A1 Alloycitations
- 2019Graphenic carbon as etching mask: patterning with laser lithography and KOH etching
- 2019Highly Reliable Contacts to Silicon Enabled by Low Temperature Sputtered Graphenic Carbon
- 2018Carbon Wonderland from an Engineering Perspective
- 2017Graphenic Carbon: A Novel Material to Improve the Reliability of Metal-Silicon Contactscitations
- 2016Graphenic Carbon-Silicon Contacts for Reliability Improvement of Metal-Silicon Junctions
- 2016Graphenic carbon-silicon contacts for reliability improvement of metal-silicon junctionscitations
- 2015Trap passivation in memory cell with metal oxide switching element
- 2013TRAP PASSIVATION IN MEMORY CELL WITH METAL OXIDE SWITCHING ELEMENT
- 2013Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part I: Process Developmentcitations
- 2012Integrated circuit including doped semiconductor line having conductive cladding
- 2011Integrated circuit including doped semiconductor line having conductive cladding
- 2010INTEGRATED CIRCUIT INCLUDING DOPED SEMICONDUCTOR LINE HAVING CONDUCTIVE CLADDING
- 2009Integrated circuit including doped semiconductor line having conductive cladding
- 2007Silicon to nickel‐silicide axial nanowire heterostructures for high performance electronicscitations
- 2004High-current nanotube transistorscitations
- 2004Catalytic CVD of SWCNTs at Low Temperatures and SWCNT Devices
- 2004Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 °C and a Simple Growth Modelcitations
- 2003Contact improvement of carbon nanotubes via electroless nickel depositioncitations
- 2001Method for fabricating an integrated circuit having at least one metallization plane
- 2001Template grown multiwall carbon nanotubes
Places of action
Organizations | Location | People |
---|
article
Graphenic carbon as etching mask: patterning with laser lithography and KOH etching
Abstract
The wet anisotropic etching process is generally used in the field of micromachining(MEMS), particularly for commercial products such as accelerometers. Hard masks like oxideor nitride play a key role in the transfer of patterns to the substrate during the lithographyprocess. This work reports on the use of polycrystalline graphenic carbon as an etch mask forwet chemical processing and outlines a simple method to create patterned structures on (100)silicon wafers. Graphenic carbon (GC) was deposited on the silicon substrate by chemical vapordeposition (CVD) using C2H4as precursor. The desired pattern was written in the spin-coatednegative photoresist using UV laser lithography. Different geometrical shapes were printed onthe substrate with dimensions ranging from 10 to 50 micrometers. In the next stage, the O2plasma etched away the carbon from the area not covered by the photoresist, acting as anadditional mask for this and the subsequent processing steps. Finally, the sample was immersedin the KOH bath saturated with isopropanol and the etching rate was evaluated for each crystalplane. Compared to the use of a sacrificial oxide mask, this technique is simpler and producesmore reliable results