People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuball, Martin H. H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Self-assembled microstructures with localized graphene domains in an epoxy blend and their related propertiescitations
- 2021Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets.citations
- 2021Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheetscitations
- 2020Polarity dependence in Cl2-based plasma etching of GaN, AlGaN and AlNcitations
- 2019Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modificationcitations
- 2018Determination of the self-compensation ratio of carbon in AlGaN for HEMTscitations
- 2017Morphological and electrical comparison of Ti and Ta based ohmic contacts for AlGaN/GaN-on-SiC HFETscitations
- 2015Low thermal resistance of a GaN-on-SiC transistor structure with improved structural properties at the interfacecitations
- 2015Enhancement-mode metal–insulator–semiconductor GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 Vcitations
- 2014Time evolution of off-state degradation of AlGaN/GaN high electron-mobility transistorscitations
- 2009Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layerscitations
- 2007Integrated Raman - IR Thermography for Reliability and Performance Optimization, and Failure Analysis of Electronic Devices
Places of action
Organizations | Location | People |
---|
document
Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modification
Abstract
Leading edge erosion caused by raindrop impact is a key problem that needs to be overcome in the wind energy sector. Solutions up to date have not proved suitable, failing prematurely in their lifecycle at a cost to the wind industry. Failure mechanisms for rain erosion are not well understood, particularly the elastic and viscous polymer properties at the resulting high strain rates (10 6 - 10 9 Hz) of raindrop impacts. The effect of the inclusion of glycidyl polyhedral oligomeric silsesquioxane nanoparticles into a commercial polyurethane coating system was studied using nanoindentation and dynamic mechanical thermal analysis (DMTA). Results show that the inclusion of POSS improves damping, providing an alternative mechanism for energy dissipation without variation of T g and minimal loss of stiffness. This presents a way of modifying current coating systems through the incorporation of POSS. Nanoindentation obtained previously unreported properties of the coating system (hardness, modulus and short-term recovery) and highlighted a correlation between loading rate and a reduction of short-term recovery. Nanoindentation was difficult for the modified leading-edge protection (LEP) samples as two phases were formed resulting in large standard deviations. DMTA results show modification of the LEP increases damping at lower temperature ranges introducing an additional mechanism of dissipating energy. Additionally, sweep data show an increase in elasticity at higher frequencies on the modified samples.