Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ouachan, Imad

  • Google
  • 1
  • 5
  • 7

National Composites Centre

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modification7citations

Places of action

Chart of shared publication
Kuball, Martin H. H.
1 / 12 shared
Liu, D.
1 / 37 shared
Ward, Carwyn
1 / 39 shared
Hamerton, Ian
1 / 113 shared
Dyer, K.
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kuball, Martin H. H.
  • Liu, D.
  • Ward, Carwyn
  • Hamerton, Ian
  • Dyer, K.
OrganizationsLocationPeople

document

Understanding of Leading-Edge Protection Performance Using Nano-Silicates for Modification

  • Kuball, Martin H. H.
  • Liu, D.
  • Ward, Carwyn
  • Ouachan, Imad
  • Hamerton, Ian
  • Dyer, K.
Abstract

Leading edge erosion caused by raindrop impact is a key problem that needs to be overcome in the wind energy sector. Solutions up to date have not proved suitable, failing prematurely in their lifecycle at a cost to the wind industry. Failure mechanisms for rain erosion are not well understood, particularly the elastic and viscous polymer properties at the resulting high strain rates (10 6 - 10 9 Hz) of raindrop impacts. The effect of the inclusion of glycidyl polyhedral oligomeric silsesquioxane nanoparticles into a commercial polyurethane coating system was studied using nanoindentation and dynamic mechanical thermal analysis (DMTA). Results show that the inclusion of POSS improves damping, providing an alternative mechanism for energy dissipation without variation of T g and minimal loss of stiffness. This presents a way of modifying current coating systems through the incorporation of POSS. Nanoindentation obtained previously unreported properties of the coating system (hardness, modulus and short-term recovery) and highlighted a correlation between loading rate and a reduction of short-term recovery. Nanoindentation was difficult for the modified leading-edge protection (LEP) samples as two phases were formed resulting in large standard deviations. DMTA results show modification of the LEP increases damping at lower temperature ranges introducing an additional mechanism of dissipating energy. Additionally, sweep data show an increase in elasticity at higher frequencies on the modified samples.

Topics
  • nanoparticle
  • impedance spectroscopy
  • polymer
  • inclusion
  • phase
  • thermal analysis
  • hardness
  • nanoindentation
  • elasticity