People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salmon, Philip Stephen
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Pressure dependent structure of amorphous magnesium aluminosilicatescitations
- 2023Mapping the structural trends in zinc aluminosilicate glassescitations
- 2022Structure and related properties of amorphous magnesium aluminosilicatescitations
- 2021Structure of crystalline and amorphous materials in the NASICON system Na1+xAlxGe2- x(PO4)3citations
- 2019Ordering on different length scales in liquid and amorphous materialscitations
- 2019Structure of the intermediate phase glasses GeSe3 and GeSe4citations
- 2017Topological Ordering and Viscosity in the Glass-Forming Ge-Se System: The Search for a Structural or Dynamical Signature of the Intermediate Phasecitations
- 2017Structure of rare-earth chalcogenide glasses by neutron and x-ray diffractioncitations
- 2016Pressure-driven transformation of the ordering in amorphous network-forming materialscitations
- 2015Networks under pressurecitations
- 2015Pressure-dependent structure of the null-scattering alloy Ti0.676Zr0.324citations
- 2013Fragile glass - formers reveal their structural secrets
- 2013Identifying and characterising the different structural length scales in liquids and glasses: an experimental approachcitations
- 2011Structure of eutectic liquids in the Au-Si, Au-Ge, and Ag-Ge binary systems by neutron diffractioncitations
- 2010Structure of liquid and glassy ZnCl2citations
- 2009Atomic structure of the two intermediate phase glasses SiSe4 and GeSe4citations
- 2003Identification of the relative distribution of rare-earth ions in phosphate glassescitations
Places of action
Organizations | Location | People |
---|
article
Ordering on different length scales in liquid and amorphous materials
Abstract
The ordering on different real-space length scales is considered for a variety of glass-forming materials, ranging from densely packed amorphous metals and hard-sphere glassy colloids, to simple tetrahedral systems that include amorphous silicon and patchy colloids, to decorated tetrahedral systems that include amorphous ice and network-forming glasses with the AX2 stoichiometry (A = Si, Ge or Zn; X = O, S, Se or Cl). The ordering manifests itself as distinct peaks in the total structure factor S(k), where k denotes the magnitude of the scattering vector, with positions ki (i = 1, 2 or 3) that scale with the nearest-neighbour distance. Different length scales emerge with complexity of the bonding scheme. A peak at k3 is a generic feature associated with nearest-neighbour contacts, and is therefore present in S(k) for all of the materials. A second longer-length scale emerges as a peak at k2 < k3 if the bonding scheme assumes a directional character, leading to the formation of tetrahedral motifs in amorphous silicon and patchy colloids, or to Se-Se-Se chain segments in glassy selenium. A third still-longer-length scale appears for AX2 glasses as a first sharp diffraction peak at k1 < k2, where the scaled peak position depends on the character of the local network of A atoms. The geometrical origin of the peaks in S(k) and corresponding partial structure factors is considered, and equations are given for predicting the peak positions. The change in system fragility with the emergence of ordering on different length scales is discussed, along with the effect of pressure.