Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ibáñez, Jaime

  • Google
  • 1
  • 5
  • 27

Universidad de Zaragoza

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Kinematics of individual muscle units in natural contractions measured in vivo using ultrafast ultrasound27citations

Places of action

Chart of shared publication
Lubel, Emma
1 / 1 shared
Farina, Dario
1 / 4 shared
Barsakcioglu, Deren
1 / 1 shared
Tang, Meng-Xing
1 / 3 shared
Sgambato, Bruno Grandi
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lubel, Emma
  • Farina, Dario
  • Barsakcioglu, Deren
  • Tang, Meng-Xing
  • Sgambato, Bruno Grandi
OrganizationsLocationPeople

article

Kinematics of individual muscle units in natural contractions measured in vivo using ultrafast ultrasound

  • Lubel, Emma
  • Ibáñez, Jaime
  • Farina, Dario
  • Barsakcioglu, Deren
  • Tang, Meng-Xing
  • Sgambato, Bruno Grandi
Abstract

<jats:title>Abstract</jats:title><jats:p><jats:italic>Objective.</jats:italic> The study of human neuromechanical control at the motor unit (MU) level has predominantly focussed on electrical activity and force generation, whilst the link between these, i.e. the muscle deformation, has not been widely studied. To address this gap, we analysed the kinematics of muscle units in natural contractions. <jats:italic>Approach.</jats:italic> We combined high-density surface electromyography (HDsEMG) and ultrafast ultrasound (US) recordings, at 1000 frames per second, from the tibialis anterior muscle to measure the motion of the muscular tissue caused by individual MU contractions. The MU discharge times were identified online by decomposition of the HDsEMG and provided as biofeedback to 12 subjects who were instructed to keep the MU active at the minimum discharge rate (9.8 ± 4.7 pulses per second; force less than 10% of the maximum). The series of discharge times were used to identify the velocity maps associated with 51 single muscle unit movements with high spatio-temporal precision, by a novel processing method on the concurrently recorded US images. From the individual MU velocity maps, we estimated the region of movement, the duration of the motion, the contraction time, and the excitation–contraction (E–C) coupling delay. <jats:italic>Main results.</jats:italic> Individual muscle unit motions could be reliably identified from the velocity maps in 10 out of 12 subjects. The duration of the motion, total contraction time, and E–C coupling were 17.9 <jats:inline-formula><jats:tex-math><?CDATA $$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo>±</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jneac8c6cieqn1.gif" xlink:type="simple" /></jats:inline-formula> 5.3 ms, 56.6 <jats:inline-formula><jats:tex-math><?CDATA $$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo>±</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jneac8c6cieqn2.gif" xlink:type="simple" /></jats:inline-formula> 8.4 ms, and 3.8 <jats:inline-formula><jats:tex-math><?CDATA $$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo>±</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jneac8c6cieqn3.gif" xlink:type="simple" /></jats:inline-formula> 3.0 ms (<jats:italic>n</jats:italic> = 390 across ten participants). The experimental measures also provided the first evidence of muscle unit twisting during voluntary contractions and MU territories with distinct split regions. <jats:italic>Significance.</jats:italic> The proposed method allows for the study of kinematics of individual MU twitches during natural contractions. The described measurements and characterisations open new avenues for the study of neuromechanics in healthy and pathological conditions.</jats:p>

Topics
  • density
  • surface
  • laser emission spectroscopy
  • mass spectrometry
  • decomposition