People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meneghetti, Marcello
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Drug delivery and optical neuromodulation using a structured polymer optical fiber with ultra-high NA
- 2023Optoelectronic and mechanical properties of microstructured polymer optical fiber neural probescitations
- 2023In vivo brain temperature mapping using polymer optical fiber Bragg grating sensorscitations
- 2022Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulationcitations
- 2022Microstructured soft fiber-based neural device for drug delivery and optical neuromodulationcitations
- 2021Graded Index Chalcogenide Fibers with Nanostructured Corecitations
- 2019Microstructured optical fibers based on chalcogenide glasses for mid-IR supercontinuum generation ; Fibres microstructurés en verres de chalcogénures pour la génération de supercontinuum dans le moyen infrarouge
- 2019Fabrication of high optical quality Ge-As-Se glasses for the development of low-loss microstructured optical fiberscitations
- 2019Chalcogenide glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generationcitations
- 2019Purification of Ge-As-Se ternary glasses for the development of high quality microstructured optical fiberscitations
- 2017Sol–gel-derived glass-ceramic photorefractive films for photonic structurescitations
- 2016SnO2 based glasses
Places of action
Organizations | Location | People |
---|
article
Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulation
Abstract
Optical fiber devices constitute significant tools for the modulation and interrogation of neuronal circuitry in the mid and deep brain regions. The illuminated brain area during neuromodulation has a direct impact on the spatio-temporal properties of the brain activity and depends solely on the material and geometrical characteristics of the optical fibers. In the present work, we developed two different flexible polymer optical fibers (POFs) with integrated microfluidic channels (MFCs) and an ultra-high numerical aperture (UHNA) for enlarging the illumination angle to achieve efficient neuromodulation. <jats:italic>Approach</jats:italic>. Three distinct thermoplastic polymers: polysulfone, polycarbonate, and fluorinated ethylene propylene were used to fabricate two step-index UHNA POF neural devices using a scalable thermal drawing process. The POFs were characterized in terms of their illumination map as well as their fluid delivery capability in phantom and adult rat brain slices<jats:italic>. Main results.</jats:italic> A 100-fold reduced bending stiffness of the proposed fiber devices compared to their commercially available counterparts has been found. The integrated MFCs can controllably deliver dye (trypan blue) on-demand over a wide range of injection rates spanning from 10 nl min<jats:sup>−1</jats:sup> to 1000 nl min<jats:sup>−1</jats:sup>. Compared with commercial silica fibers, the proposed UHNA POFs exhibited an increased illumination area by 17% and 21% under 470 and 650 nm wavelength, respectively. In addition, a fluorescent light recording experiment has been conducted to demonstrate the ability of our UHNA POFs to be used as optical waveguides in fiber photometry. <jats:italic>Significance</jats:italic>. Our results overcome the current technological limitations of fiber implants that have limited illumination area and we suggest that soft neural fiber devices can be developed using different custom designs for illumination, collection, and photometry applications. We anticipate our work to pave the way towards the development of next-generation functional optical fibers for neuroscience.</jats:p>