People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lazov, Lyubomir
Technical University of Gabrovo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024STUDY OF ADHESION OF PHYSICAL VAPOR DEPOSITION COATINGS ON FUNCTIONAL TEXTILE WITH LASER POST-PROCESSINGcitations
- 2023INVESTIGATION OF SURFACE ROUGHNESS OF CARBON STEEL MACHINED PARTS AFTER NANOSECOND FIBER LASER MARKING
- 2023ALUMINUM AND STEEL WELDING WITH 500 W FIBRE LASER
- 2023Modification of the roughness of 304 stainless steel by laser surface texturing (LST)citations
- 2023Investigation of the influence of the processing speed and the linear pulse density of the laser surface texturing processcitations
- 2021Investigation of the influence of the scanning speed and step in laser marking and engraving of aluminumcitations
- 2021Analysis of the process of laser ablation of marble surfaces
- 2021Numerical modeling and simulation for laser beam welding of ultrafine-grained aluminiumcitations
- 2021Influence of pulse duration on the process of laser marking of CT80 carbon tool steel productscitations
- 2021INVESTIGATION OF THE INFLUENCE OF THE NUMBER OF REPETITIONS ON THE PROCESS OF LASER MARKING OF HS6-5-2-5 STEEL
- 2021Laser marking and engraving of household and industrial plastic productscitations
Places of action
Organizations | Location | People |
---|
article
Modification of the roughness of 304 stainless steel by laser surface texturing (LST)
Abstract
<jats:title>Abstract</jats:title><jats:p>Surface texturing is one of the most effective approaches to modifying the surface to improve many properties: tribological, corrosion resistance, microhardness and others characteristics of a number of engineering materials. Among the surface texturing techniques developed in recent years, the most widely used method is the laser surface texturing method (LST) due to its high flexibility, superior texturing accuracy and good process controllability and reproducibility. With its rapid development, LST has attracted considerable attention in various industries such as automotive, biomedical and aerospace. The present study considers the changes in roughness in different modes of laser texturing of stainless steel specimens 304. The effects and role of individual laser parameters on the change in roughness are analyzed as a main characteristic of the surface properties of the processed material. Heating and its surface melting is one of the studied effects and its role in changing the roughness. The focus of the study is on the process of laser–material interaction as a function of absorbed energy density, pulse frequency, scan rate, and overlap coefficients leading to different effects of LST parameters. It has been found that increasing the energy density, accompanied by a decrease in the frequency and speed of scanning, can increase the surface roughness.</jats:p>