Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bellini, Emilio

  • Google
  • 1
  • 3
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Testing gravity with gravitational wave friction and gravitational slip12citations

Places of action

Chart of shared publication
Kunz, Martin
1 / 8 shared
Matos, Isabela S.
1 / 1 shared
Calvão, Maurício O.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Kunz, Martin
  • Matos, Isabela S.
  • Calvão, Maurício O.
OrganizationsLocationPeople

article

Testing gravity with gravitational wave friction and gravitational slip

  • Kunz, Martin
  • Matos, Isabela S.
  • Bellini, Emilio
  • Calvão, Maurício O.
Abstract

<jats:title>Abstract</jats:title><jats:p>Gravitational waves (GWs) emitted by binary sources are interesting signals for testing gravity on cosmological scales since they allow measurements of the luminosity distance. When followed by electromagnetic counterparts, in particular, they enable a reconstruction of the GW-distance-redshift relation. In the context of several modified gravity (MG) theories, even when requiring that the speed of propagation is equal to that of light, this GW distance differs from the standard electromagnetic luminosity distance due to the presence of a modified friction in the GW propagation. The very same source of this friction, which is the running of an effective Planck mass, also affects the scalar sector generating gravitational slip, i.e. a difference between the scalar potentials, an observable that can be inferred from large-scale structure (LSS) probes. In this work, we use a model within effective field theories for dark energy to exemplify precisely the fact that, at the linear perturbation level, parametrizing a single function is already enough to generate simultaneous deviations in the GW distance and the slip. By simulating multimessenger GW events that might be detected by the Einstein Telescope in the future, we compare the constraining power of the two observables on this single degree of freedom. We then combine forecasts of an <jats:italic>Euclid</jats:italic>-like survey with GW simulations, coming to the conclusion that, when using Planck data to better constrain the cosmological parameters, those future data on the scalar and tensor sectors are competitive to probe such deviations from General Relativity, with LSS giving stronger (but more model-dependent) results than GWs.</jats:p>

Topics
  • impedance spectroscopy
  • simulation
  • laser sintering