Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

R., Dr. Ramesh Kumar

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Mechanical Characteristics of Kenaf-Glass Fiber Reinforced Hybrid Composites by Varying the Stacking Sequences1citations

Places of action

Chart of shared publication
Raja, K.
1 / 8 shared
Rajesh, D.
1 / 1 shared
Raju, M.
1 / 1 shared
Manivannan, J.
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Raja, K.
  • Rajesh, D.
  • Raju, M.
  • Manivannan, J.
OrganizationsLocationPeople

article

Mechanical Characteristics of Kenaf-Glass Fiber Reinforced Hybrid Composites by Varying the Stacking Sequences

  • Raja, K.
  • R., Dr. Ramesh Kumar
  • Rajesh, D.
  • Raju, M.
  • Manivannan, J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Fiber composite materials are preferred for their lightweight, low-cost, and commercial uses. As part of this study, laminate materials consisting of two different fiber materials as their reinforcement materials are produced using the hand layup method. This study investigates the mechanical properties of hybrid composite laminates fabricated using kenaf and glass fibers. Six stacking arrangements of the fibers are examined, alongside two reference laminates with individual reinforcements. Epoxy resins HY951 and LY556 serve as matrix materials. ASTM standards guide the mechanical testing of the composites. Results indicate varied tensile strengths based on stacking sequence, with laminate L2 (KKGKK) featuring a single glass fiber core at 75 MPa, and increasing strengths in laminates with additional glass layers: L1 (GKKKG) at 123 MPa, L5 (KGKGK) at 110 MPa, L3 (GKGKG) at 150 MPa, L6 (KGGGK) at 118 MPa, and L4 (GGKGG) at 159 MPa, the highest among all. It was observed that adding one layer of glass fiber with kenaf fiber boosts strength and modulus by 9.52% and 12.19% respectively, compared to pure kenaf fiber composites. Morphological analysis via Scanning Electron Microscopy (SEM) confirms failure due to initial crack propagation in the matrix and fibers. This study offers insights into hybrid composite laminate behavior, pertinent for various industrial applications.&amp;#xD;</jats:p>

Topics
  • scanning electron microscopy
  • glass
  • glass
  • crack
  • strength
  • composite
  • tensile strength
  • resin