Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aldawood, İbrahim

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Characterization of composition dependence of properties of a MgNiO-based MSM structurecitations

Places of action

Chart of shared publication
Achinuq, Barat
1 / 5 shared
Sarcan, Fahrettin
1 / 6 shared
Kerrigan, Adam
1 / 3 shared
Lazarov, Vlado
1 / 4 shared
Doğan, Ümit
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Achinuq, Barat
  • Sarcan, Fahrettin
  • Kerrigan, Adam
  • Lazarov, Vlado
  • Doğan, Ümit
OrganizationsLocationPeople

article

Characterization of composition dependence of properties of a MgNiO-based MSM structure

  • Achinuq, Barat
  • Sarcan, Fahrettin
  • Kerrigan, Adam
  • Lazarov, Vlado
  • Aldawood, İbrahim
  • Doğan, Ümit
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, the effect of Mg composition on structural and optical properties of MgxNi1-xO alloy thin film single crystal semiconductors as well as their implementation into Metal-Semiconductor-Metal (MSM) photodetector are studied. An 850 meV blue-shift of the bandgap is observed from 3.65 eV to 4.50 eV with increasing Mg composition from 0% to 67%. The deep ultraviolet/visible rejection ratio, which is the ratio of photosensitivity at a peak wavelength of 360 nm to that at 450 nm is found to be ~58 for Mg composition of 67%. Mg rich (%67 Mg) alloy-based photodetector is found to have two orders smaller dark current and have higher spectral response compared to NiO-based one. Spectral responsivities for MgxNi1-xO photodetectors are determined as 415 mA/W, 80 mA/W, and 5.6 mA/W for Mg compositions of 67%, 21%, and 0% (reference-NiO), respectively. Furthermore, the detectivity of the photodetectors enhances as Mg composition increases and the highest detectivity of a magnitude of 1011 Jones is found for the photodetector with Mg composition of 67%.</jats:p>

Topics
  • impedance spectroscopy
  • single crystal
  • thin film
  • semiconductor