People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aberoumand, Mohammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 20244D printing and annealing of PETG composites reinforced with short carbon fiberscitations
- 2024Influence of Programming and Recovery Parameters on Compressive Behaviors of 4D‐Printed Biocompatible Polyvinyl Chloride or Vinyl–Poly(ε‐Caprolactone) Blendscitations
- 2024Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D-printed ABS-TPU blends by FDMcitations
- 20244D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performancecitations
- 20234D Printing‐Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performancescitations
- 2023Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro‐ and Micro‐Structural Propertiescitations
- 2023Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodologycitations
- 20234D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performancecitations
- 2022A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structurescitations
- 2021Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Partscitations
- 20214D Printing by Fused Deposition Modeling (FDM)citations
Places of action
Organizations | Location | People |
---|
article
4D printing and annealing of PETG composites reinforced with short carbon fibers
Abstract
<jats:title>Abstract</jats:title><jats:p>In this study, for the first time, post-heat treatment was applied to improve the stress recovery of short carbon fiber reinforced PETG (SCFRPETG). PETG and SCFRPETG composite were printed under optimal conditions, and constrained and free shape memory cycles were applied under compression and three-point bending loadings to assess shape and stress recovery. The results of the free shape memory test for both vertical and horizontal patterns showed that PETG composite also has a higher shape memory effect (SME) compared to PETG. The SME was significantly improved by performing heat treatment. The stress recovery values for pure PETG, reinforced PETG before and after annealing are 2.48 MPa, 3.04 MPa and 3.18 MPa, respectively. It showed that the addition of 1.5% carbon fiber increases the stress recovery by 22%. The increasing trend reaches 28% by performing post-heat treatment. Additionally, altering the printing pattern affects the programming and stress recovery values. For the SCFRPETG composite samples before and after annealing, changing the printing pattern from horizontal to vertical, resulted in a 16% and 7% increase in recovery stress, respectively. SEM results confirm that the annealing process removes the layered structure, micro-holes caused by shrinkage and 4D printing mechanism. Using the controlled heat treatment method can be a practical solution to solve the problem of adhesion and reduce the anisotropy of FDM 3D printed layers.</jats:p>