Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumar, Sampath

  • Google
  • 4
  • 8
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L6citations
  • 2024Influence of in-situ process parameters, post heat treatment effects on microstructure and defects of additively manufactured maraging steel by laser powder bed fusion—A comprehensive review4citations
  • 2023Experimental investigation to optimize machining parameters for super duplex stainless steel in spark EDM using die-sinking and MQL system2citations
  • 2018CHARACTERIZATION OF TiCN COATING SYNTHESIZED BY THE PLASMA ENHANCED PHYSICAL VAPOUR DEPOSITION PROCESS ON A CEMENTED CARBIDE TOOL2citations

Places of action

Chart of shared publication
Haribaskar, R.
1 / 1 shared
Mathur, Ayush Bansi
1 / 1 shared
Chunamari, Omkar Vinay
1 / 1 shared
M., Dr. Vignesh
1 / 6 shared
Tamiloli, N.
1 / 1 shared
Jebaraj, A. Vinoth
1 / 1 shared
Sivakumar, K.
1 / 4 shared
Shankar, E.
1 / 2 shared
Chart of publication period
2024
2023
2018

Co-Authors (by relevance)

  • Haribaskar, R.
  • Mathur, Ayush Bansi
  • Chunamari, Omkar Vinay
  • M., Dr. Vignesh
  • Tamiloli, N.
  • Jebaraj, A. Vinoth
  • Sivakumar, K.
  • Shankar, E.
OrganizationsLocationPeople

article

The impact of successive laser shock peening on surface integrity and residual stress distribution of laser powder-bed fused stainless steel 316L

  • Haribaskar, R.
  • Kumar, Sampath
Abstract

<jats:title>Abstract</jats:title><jats:p>The utilization of laser shock peening (LSP) in laser powder bed fused (LPBF) stainless steel (SS) 316L components enhances the mechanical characteristics and operational lifespan of the product quality through a significant reduction of residual stress and a noticeable increase in roughness parameters. The key objective of the study is to analyze the influence of consecutive laser shock peening (LSP) without ablative coating and low pulse energy on the surface properties, residual stress distribution, and microhardness of samples produced by LPBF with SS316L material. The surface quality of the sample subjected to consecutive laser shock peening shows a slight deterioration in its condition. This can be attributed to the combined impact of ablative surface and surface damage resulting from the production of high-energy plasma. However, the implementation of successive LSP results in a distinctive enhancement of compressive residual stresses (CRS) that are evenly distributed throughout the central axis and sharp edges. In contrast, the as-built condition exhibits non-uniform stress magnitudes. CRS observed in each LSP iteration exhibits a notable increase, reaching a maximum magnitude of −389 MPa compared to the initial stress level of 165 MPa in the as-built sample. This enhancement can be attributed to the repetitive impact of shock waves on the surface, leading to the formation of plastic deformation. The refinement of surface grains and the presence of favorable residual stresses were proven by the utilization of x-ray diffraction (XRD) studies and the Cos <jats:italic>α</jats:italic> plot. The XRD investigation also indicated the absence of any newly formed phases or secondary phases. A significant enhancement in microhardness was observed, with an increase of 58.3% achieved after the third consecutive peening process. The successive LSP samples displayed a gradual improvement in electrochemical behavior. Though the amplitude parameters increased after LSP, the increase in wear rate was observed.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • grain
  • stainless steel
  • phase
  • x-ray diffraction