People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aberoumand, Mohammad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 20244D printing and annealing of PETG composites reinforced with short carbon fiberscitations
- 2024Influence of Programming and Recovery Parameters on Compressive Behaviors of 4D‐Printed Biocompatible Polyvinyl Chloride or Vinyl–Poly(ε‐Caprolactone) Blendscitations
- 2024Effects of TPU on the mechanical properties, fracture toughness, morphology, and thermal analysis of 3D-printed ABS-TPU blends by FDMcitations
- 20244D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performancecitations
- 20234D Printing‐Encapsulated Polycaprolactone–Thermoplastic Polyurethane with High Shape Memory Performancescitations
- 2023Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro‐ and Micro‐Structural Propertiescitations
- 2023Shape memory performance assessment of FDM 3D printed PLA-TPU composites by Box-Behnken response surface methodologycitations
- 20234D Printing of Polyvinyl Chloride (PVC): A Detailed Analysis of Microstructure, Programming, and Shape Memory Performancecitations
- 2022A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structurescitations
- 2021Mechanical Characterization of Fused Deposition Modeling (FDM) 3D Printed Partscitations
- 20214D Printing by Fused Deposition Modeling (FDM)citations
Places of action
Organizations | Location | People |
---|
article
4D printing of porous PLA-TPU structures: effect of applied deformation, loading mode and infill pattern on the shape memory performance
Abstract
<jats:title>Abstract</jats:title><jats:p>For the first time, the synergy of shape memory polymer (SMP) blending, 4D printing, and cold programming (CP) are investigated for improving the functionality of the shape memory effect (SME), increasing medical applications of porous structures, direct programming, and removing current limitations. Porous PLA-TPU structures with different printing patterns and applied deformation were CPed under constrained and non-constrained compression modes at room temperature and were recovered in the rubbery phase. The shape fixity and shape recovery ratios were calculated and the cross-section morphology was examined with scanning electron microscopy (SEM). The shape fixity values were in the range of 39.75%–71.27%, while almost complete shape recovery ratios (100%) were observed for all porous samples. Low shape fixity ratios can be justified due to the existence of two steps of spring-back and structure relaxation after unloading in cold programming, resulting from elastic and viscoelastic behavior. The glass transition temperature of the PLA-TPU blend was 69 °C and shifted to raw materials, indicating the possibility of some interaction between the two components. SEM images showed the uniform distribution of TPU particles and matrix-droplet morphology in the PLA-TPU blend. After printing, TPU droplets were stretched and the sea-island morphology was observed in some segments.</jats:p>