Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fadlallah, Mohamed

  • Google
  • 3
  • 9
  • 138

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Structural, electronic, magnetic and optical properties of transition metal doped boron arsenide nanosheets5citations
  • 2021Novel two-dimensional AlSb and InSb monolayers with a double-layer honeycomb structure: a first-principles study58citations
  • 2021Two-dimensional porous graphitic carbon nitride C6N7 monolayer: First-principles calculations75citations

Places of action

Chart of shared publication
Helal, M. A.
1 / 3 shared
Faraji, Mehrdad
1 / 4 shared
Ghergherehchi, M.
2 / 2 shared
Karbasizadeh, S.
1 / 1 shared
Ziabari, A. Abdolahzadeh
1 / 1 shared
Bafekry, Asadollah
2 / 4 shared
Rahman, Hamad
2 / 3 shared
Fazeli, Sara
1 / 2 shared
Faraji, M.
1 / 5 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Helal, M. A.
  • Faraji, Mehrdad
  • Ghergherehchi, M.
  • Karbasizadeh, S.
  • Ziabari, A. Abdolahzadeh
  • Bafekry, Asadollah
  • Rahman, Hamad
  • Fazeli, Sara
  • Faraji, M.
OrganizationsLocationPeople

article

Structural, electronic, magnetic and optical properties of transition metal doped boron arsenide nanosheets

  • Helal, M. A.
  • Fadlallah, Mohamed
Abstract

<jats:title>Abstract</jats:title><jats:p>Due to the fascinating properties of the BAs monolayer and its promising applications, we study the structural, electronic, magnetic, and optical properties of the 3<jats:italic>d</jats:italic> transition metal mono-doped BAs nanosheets using first-principle calculations. Two substitutional doping configurations are considered at sites B (dopant<jats:sub>B</jats:sub>) and As (dopant<jats:sub>As</jats:sub>). The doped structure at site As is more stable than at site B for the same dopant because the difference in atomic size between the dopant and As atoms is smaller than the corresponding dopant and B atoms. We explain the magnetic moments of the doped monolayer in terms of the number of valence electrons, the oxidation number, and the coupling between the electrons in the outer shell of the dopant. The Mn<jats:sub>B</jats:sub>, Cu, and Zn<jats:sub>B</jats:sub> dopings convert the semiconducting behavior of the pristine BAs monolayer into metallic behavior. The BAs monolayer becomes a dilute magnetic semiconductor under the influence of V<jats:sub>B</jats:sub>, Cr, Fe<jats:sub>B</jats:sub>, Co<jats:sub>B</jats:sub>, and Ni dopings. Due to their half-metallic behavior, the Ti-, Mn-, Fe-, and Zn-doped BAs at the site As can be used in spintronic applications. The Ti<jats:sub>As</jats:sub> and Mn<jats:sub>As</jats:sub> doped BAs nanosheets can enhance light absorption in the infrared and small range of the visible light regions as compared to pristine and the other doped nanosheets. The results indicate that doped BAs monolayers can be used in various optoelectronic and spintronic applications.</jats:p>

Topics
  • impedance spectroscopy
  • semiconductor
  • Boron