Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bouafia, Abderrhmane

  • Google
  • 4
  • 19
  • 57

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Eco-Friendly Synthesis of Al2O3 Nanoparticles: Comprehensive Characterization Properties, Mechanics, and Photocatalytic Dye Adsorption Study10citations
  • 2024Nanostructured Mn@NiO composite for addressing multi-pollutant challenges in petroleum-contaminated water6citations
  • 2024Green synthesis of Mn 3 O 4 @CoO nanocomposites using Rosmarinus officinalis L. extract for enhanced photocatalytic hydrogen production and CO 2 conversion9citations
  • 2023High-efficiency photocatalytic degradation of antibiotics and molecular docking study to treat the omicron variant of COVID-19 infection using biosynthesized ZnO@Fe<sub>3</sub>O<sub>4</sub> nanocomposites32citations

Places of action

Chart of shared publication
Gherbi, Mohammed Taher
1 / 2 shared
Eddine, Laouini Salah
1 / 3 shared
Abdullah, Johar Amin Ahmed
1 / 4 shared
Trzepieciński, Tomasz
1 / 26 shared
Hasan, Gamil Gamal
4 / 7 shared
Amor, Ilham Ben
1 / 6 shared
Gharbi, Ahlam Hacine
1 / 1 shared
Lumbers, Brock
1 / 1 shared
Laouini, Salah Eddine
3 / 4 shared
Rooney, David W.
2 / 11 shared
Osman, Ahmed I.
2 / 23 shared
Mohammed, Hamdi
1 / 1 shared
Meneceur, Souhaila
3 / 5 shared
Kir, Iman
1 / 1 shared
Althamthami, Mohammed
2 / 5 shared
Al-Hazeef, Mazen S. F.
1 / 1 shared
Al-Fatesh, Ahmed S.
1 / 6 shared
Daoudi, Henda
1 / 1 shared
Salmi, Chaima
1 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Gherbi, Mohammed Taher
  • Eddine, Laouini Salah
  • Abdullah, Johar Amin Ahmed
  • Trzepieciński, Tomasz
  • Hasan, Gamil Gamal
  • Amor, Ilham Ben
  • Gharbi, Ahlam Hacine
  • Lumbers, Brock
  • Laouini, Salah Eddine
  • Rooney, David W.
  • Osman, Ahmed I.
  • Mohammed, Hamdi
  • Meneceur, Souhaila
  • Kir, Iman
  • Althamthami, Mohammed
  • Al-Hazeef, Mazen S. F.
  • Al-Fatesh, Ahmed S.
  • Daoudi, Henda
  • Salmi, Chaima
OrganizationsLocationPeople

article

High-efficiency photocatalytic degradation of antibiotics and molecular docking study to treat the omicron variant of COVID-19 infection using biosynthesized ZnO@Fe<sub>3</sub>O<sub>4</sub> nanocomposites

  • Laouini, Salah Eddine
  • Daoudi, Henda
  • Hasan, Gamil Gamal
  • Bouafia, Abderrhmane
  • Meneceur, Souhaila
  • Salmi, Chaima
Abstract

<jats:title>Abstract</jats:title><jats:p>In this study, ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocomposite (NC) was synthesized using a green synthesis method with <jats:italic>Mentha pulegium</jats:italic> leaf extract. Characterization techniques such as UV–vis, FTIR, SEM, TGA, and XRD were employed to confirm the formation of ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC and thermogravimetric analysis to evaluate the breakdown of NC in the presence of heat. XRD analysis showed a crystallite size of about 25.59 nm and SEM images of ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC revealed spherical-shaped agglomerated particles. The optical bandgap energy of the ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC was estimated to be 2.51 eV for direct bandgap and 1.57 eV for allowable indirect bandgap. Photocatalytic activity of the ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC was evaluated for the degradation of Amoxicillin, Cephalexin, and Metronidazole antibiotics under sunlight irradiation, showing degradation efficiencies of 71%, 69%, and 99%, respectively, suggesting the potential of ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC for removal of antibiotics from waterways. First-principles theory was employed to establish the adsorption energy (E<jats:sub>ad</jats:sub>) of the antibiotic species, including Amoxicillin, Cephalexin, and Metronidazole, on the surface of ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocomposite, which was found to be −8.064, −8.791, and −21.385 eV, respectively, indicating strong adsorption. Furthermore, molecular docking studies were conducted to upgrade Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles to ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> NC to enhance composite efficiency. Leveraging the FDA-approved use of Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanoparticles and their known antiviral activity, our docking experiment demonstrated promising results in the interaction between ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocomposite and the spike protein receptor-binding domain of SARS-CoV-2 S Omicron. These findings suggest that ZnO@Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub> nanocomposite could potentially inhibit virus attachment to host cell receptors more stably, providing a promising avenue for further exploration in developing effective medications against SARS-CoV-2.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • theory
  • experiment
  • thermogravimetry