Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Subhani, Waqas Siddique

  • Google
  • 1
  • 5
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Tungsten dopant incorporation for bandgap and type engineering of perovskite crystals24citations

Places of action

Chart of shared publication
Shahid, Wajeehah
1 / 6 shared
Ammami, Mongi
1 / 1 shared
Hussain, Saddam
1 / 1 shared
Ali, Rashid
1 / 3 shared
Iftikhar, Muhammad
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shahid, Wajeehah
  • Ammami, Mongi
  • Hussain, Saddam
  • Ali, Rashid
  • Iftikhar, Muhammad
OrganizationsLocationPeople

article

Tungsten dopant incorporation for bandgap and type engineering of perovskite crystals

  • Shahid, Wajeehah
  • Ammami, Mongi
  • Subhani, Waqas Siddique
  • Hussain, Saddam
  • Ali, Rashid
  • Iftikhar, Muhammad
Abstract

<jats:title>Abstract</jats:title><jats:p>Organic–inorganic hybrid halide perovskites have shown to be viable semiconductor materials, as the absorber layer of solar cells. Unfortunately, the polycrystalline qualities of perovskite films result in nonuniform coverage or a high recombination rate, which weakens the photoelectric capabilities of thin films. Here, the pure and tungsten (W)-doped methylammonium lead bromide (CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbBr<jats:sub>3</jats:sub> or MAPbBr<jats:sub>3</jats:sub>) films are deposited to FTO-glass substrates using the sol–gel spin coating method. The W-doping causes the nucleation and crystallization processes, which then have an impact on the film’s characteristics. It is discovered that the introduction of tungsten metal significantly enhances the quality of the perovskite film, resulting in larger grain sizes, lower band gap energy, and shorter recombination lifetimes, increasing the power conversion efficiency of perovskite thin film solar cells.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • grain
  • grain size
  • thin film
  • glass
  • semiconductor
  • glass
  • tungsten
  • crystallization
  • power conversion efficiency
  • spin coating