People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ahmad, Harith
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2023Sol-Gel growth of zinc oxide particles on graphene sheets for mode-locking in Thulium/Holmium-doped fiber lasercitations
- 2015Wide-range in-fibre Fabry-Perot resonator for ultrasonic sensingcitations
- 2015Tilted Fiber Bragg Grating Sensors for Reinforcement Corrosion Measurement in Marine Concrete Structurecitations
Places of action
Organizations | Location | People |
---|
article
Sol-Gel growth of zinc oxide particles on graphene sheets for mode-locking in Thulium/Holmium-doped fiber laser
Abstract
This work used Graphene/Zinc Oxide (G/ZnO) nanocomposite to generate mode-locked pulses in Thulium/Holmium-doped fiber (THDF). The sol-gel method was used to synthesize the ZnO particles decorated graphene sheets. The G/ZnO nanocomposite solution was deposited onto the arc-shaped fiber that had been fabricated to act as the saturable absorber (SA) device. The nonlinear optical response of G/ZnO-based SA was investigated via the twin detection approach, in which it exhibits a modulation depth of 14.11% and a saturation intensity of 4.23 MW cm<jats:sup>−2</jats:sup>. After incorporating the fabricated SA into the THDF laser cavity, mode-locked pulses were produced at a threshold pump power of 274.3 mW with a center wavelength of 1895.11 nm, fundamental frequency of 11.82 MHz, and a pulse duration of 1.7 ps. The maximum average output power and single pulse energy were determined to be 1.39 mW and 117 pJ, respectively. The mode-locked pulses generated were exceptionally stable, giving a signal-to-noise ratio (SNR) of 58.2 dB. According to the findings of the current research, it is anticipated that the G/ZnO-arc-shaped fiber-based SA has the potential to produce stable mode-locked lasers in the 2.0 <jats:italic>μ</jats:italic>m region.</jats:p>