Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mishra, Abhisek

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Optimizing spin pumping and spin mixing conductance via Cu spacer layer in Mn<sub>2</sub>Au/Py systemcitations

Places of action

Chart of shared publication
Bedanta, Subhankar
1 / 9 shared
Azevedo, Antonio
1 / 4 shared
Gupta, Pushpendra
1 / 1 shared
Nayak, Sagarika
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bedanta, Subhankar
  • Azevedo, Antonio
  • Gupta, Pushpendra
  • Nayak, Sagarika
OrganizationsLocationPeople

article

Optimizing spin pumping and spin mixing conductance via Cu spacer layer in Mn<sub>2</sub>Au/Py system

  • Bedanta, Subhankar
  • Azevedo, Antonio
  • Gupta, Pushpendra
  • Nayak, Sagarika
  • Mishra, Abhisek
Abstract

<jats:title>Abstract</jats:title><jats:p>Switching magnetization with spin current via spin orbital torque is a novel approach towards energy-efficient spintronics. In this regard, high spin–orbit coupling materials such as heavy metals are required to create the spin current via spin Hall effect. In recent times, a lot of attention has been paid to replace heavy metals by antiferromagnets to be considered as a spin sink. The bimetallic antiferromagnet, Mn<jats:sub>2</jats:sub>Au has attracted interest due to its high Néel temperature (T<jats:sub><jats:italic>N</jats:italic></jats:sub> &gt; 1000 K) and high spin Hall angle. Here, we present results from experiments on spin pumping and the inverse spin Hall effect (ISHE) employing ferromagnetic resonance in Mn<jats:sub>2</jats:sub>Au/Py and Mn<jats:sub>2</jats:sub>Au/Cu/Py systems. The values of Gilbert damping constant decrease while inverse spin Hall voltage increases with the insertion of Cu spacer layer. This unusual behaviour indicates that the interface plays an important role for tuning the spintronic parameters. The maximum effective spin mixing conductance (<jats:inline-formula><jats:tex-math> <?CDATA ${g}_{{eff}}^$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi>g</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">eff</mml:mi></mml:mrow><mml:mrow><mml:mo>↑</mml:mo><mml:mo>↓</mml:mo></mml:mrow></mml:msubsup></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psacdb9fieqn1.gif" xlink:type="simple" /></jats:inline-formula>) has been evaluated to be 36.20 × 10<jats:sup>18</jats:sup> m<jats:sup>−2</jats:sup>.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • magnetization