People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Verkhoshanskiy, Yanis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Structure and flexural strength of the hot-pressed AlMgB<sub>14</sub> ceramic
Abstract
<jats:title>Abstract</jats:title><jats:p>AlMgB<jats:sub>14</jats:sub> materials were obtained by hot-pressing of the prereacted AlMgB<jats:sub>14</jats:sub> powder. The phase composition, structure, hardness and flexural strength have been studied. The XRD studies shown that the phase composition of the obtained materials contains from 9 to 12 wt. % of the spinel MgAl<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> phase except target AlMgB<jats:sub>14</jats:sub>-phase. The spinel content increases linearly with an increase in the hot-pressing temperature from 1400 °C to 1600 °C. It was found that the density of the studied materials non-linearly depends on the hot-pressing temperature. An increase in the hot-pressing temperature from 1400 °C to 1500 °C leads to an increase in the relative density of the samples from 84% to 93%, respectively. A further increase in the hot-pressing temperature to 1600 °C leads to a decrease in the relative density to 81% due to the complication of the densification processes with an increase in the spinel content. An increase in the relative density from 81% to 93% leads to an increase in the flexural strength from 121 to 314 MPa and an increase in the Vickers microhardness from 5.1 to 7.9 GPa, respectively.</jats:p>