People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Abbas, Qaisar
University of the West of Scotland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitorscitations
- 2022Development of functional materials for the removal of heavy metals from industrial waste waters
- 2022Graphene synthesis techniques and environmental applicationscitations
- 2022Band gap and pseudocapacitance of Gd2O3 doped with Ni0.5Zn0.5Fe2O4citations
- 2022Structural tuneability and electrochemical energy storage applications of resorcinol-formaldehyde-based carbon aerogelscitations
- 2020Effect of physical activation/surface functional groups on wettability and electrochemical performance of carbon/activated carbon aerogels based electrode materials for electrochemical capacitorscitations
- 2020Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitorscitations
- 2019Effect of nitrogen doping on the electrochemical performance of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applicationscitations
- 2018Synthesis and characterisation of control porosity resorcinol formaldehyde based carbon aerogels under different conditions
- 2018Effect of nitrogen doping on physical and electrochemical properties of resorcinol / formaldehyde based carbons
- 2017Synthesis and electrochemical properties of highly porous nitrogen-doped carbon for improved supercapacitor performance
- 2017Improving the functionality of resorcinol-formaldehyde based carbon aerogels as electrode material for supercapacitor applications
- 2017Electrochemical performance of controlled porosity resorcinol/formaldehyde based carbons as electrode materials for supercapacitor applicationscitations
Places of action
Organizations | Location | People |
---|
article
Band gap and pseudocapacitance of Gd2O3 doped with Ni0.5Zn0.5Fe2O4
Abstract
<p>Herein, we present a detailed study of the structural, optical, and electrochemical responses of Gd<sub>2</sub>O<sub>3</sub> doped with nickel zinc ferrite nanoparticles. Doping of Ni<sub>0.5</sub>Zn<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> nanoparticles to Gd<sub>2</sub>O<sub>3</sub> powder was done through thermal decomposition at 1000 °C. The average grain size of the mixture was determined to be approximately 95 nm, and phases of cubic Gd<sub>2</sub>O<sub>3</sub>, GdO, and orthorhombic prisms of GdFeO<sub>3</sub> were identified. The focused ion beam energy dispersive x-ray spectrum (FIB-EDX) mapping results clearly show the morphology of the particles with Gd and Fe as the dominant elements. The structural data were compared with the spectroscopic measurements confirming the formation of multiple phases of oxides and ferrites. The measured optical band gap is significantly redshifted to 1.8 eV and is close to that of nitride compounds of gadolinium metal. The measured specific capacitance was almost 7 Fg<sup>−1</sup> at a current density of 1 Ag<sup>−1</sup>, showing a small drop of 27% when the current density is increased to 10 Ag<sup>−1</sup>. Cyclic voltammetry (CV) plots of the ferrite doped Gd<sub>2</sub>O<sub>3</sub> electrode at a scan rate of 5 to 100 mV s<sup>−1</sup> indicate the pseudocapacitive nature of the material.</p>