Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zeba, I.

  • Google
  • 1
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Computational investigation to explore the effects of metals (Mg, Ca, Sr) doping on phase transition, electronic band structure and their repercussions on optical, elastic and mechanical properties of BaThO<sub>3</sub>3citations

Places of action

Chart of shared publication
Shakil, M.
1 / 2 shared
Awais, M.
1 / 3 shared
Gillani, Sajid
1 / 5 shared
Ahmad, Riaz
1 / 6 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shakil, M.
  • Awais, M.
  • Gillani, Sajid
  • Ahmad, Riaz
OrganizationsLocationPeople

article

Computational investigation to explore the effects of metals (Mg, Ca, Sr) doping on phase transition, electronic band structure and their repercussions on optical, elastic and mechanical properties of BaThO<sub>3</sub>

  • Shakil, M.
  • Zeba, I.
  • Awais, M.
  • Gillani, Sajid
  • Ahmad, Riaz
Abstract

<jats:title>Abstract</jats:title><jats:p>The effect of metals (Mg, Ca, Sr) doping concentration on phase transition, electronic band structure, and their repercussions on the optical, elastic, and mechanical properties of BaThO<jats:sub>3</jats:sub> is presented. At 1.40% doping of Mg, Ca, and Sr-atom, the structure of BaThO<jats:sub>3</jats:sub> remains cubic. However, it changes from cubic to a pseudo-cubic tetragonal phase at doping concentrations of 4.22% and 7.04%. A systematic substantial shrinking of the band gap is observed in all cases of doping, and its nature remains direct on the G-symmetry point. The reduction in the band gap is explained by the total density of states (TDOS), partial density of states (PDOS), and elemental partial density of states (EPDOS) in the line of phase transformation. The optical response of a doped compound shows a red shift in the absorption edge, whereas the refractive index increases from 2.067–2.227 with Mg-doping and slightly decreases with Ca and Sr doping. For cubic and tetragonal symmetry, the computed elastic constants follow the mechanical stability criteria for each doping concentration, except at 7.04%Ca doping. Furthermore, the bulk modulus <jats:inline-formula><jats:tex-math> <?CDATA $(B),$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>B</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psaca6afieqn1.gif" xlink:type="simple" /></jats:inline-formula> shear modulus <jats:inline-formula><jats:tex-math> <?CDATA $(G),$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psaca6afieqn2.gif" xlink:type="simple" /></jats:inline-formula> Young’s modulus <jats:inline-formula><jats:tex-math> <?CDATA $(E),$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>,</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psaca6afieqn3.gif" xlink:type="simple" /></jats:inline-formula> Poisson’s ratio, and anisotropic factor <jats:inline-formula><jats:tex-math> <?CDATA $(A)$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>A</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psaca6afieqn4.gif" xlink:type="simple" /></jats:inline-formula> are estimated by utilizing elastic parameters. The <jats:inline-formula><jats:tex-math> <?CDATA $B/G$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>B</mml:mi><mml:mo>/</mml:mo><mml:mi>G</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psaca6afieqn5.gif" xlink:type="simple" /></jats:inline-formula> value is also determined to assess the ductile/brittle character of pure and doped compounds. Moreover, at 4.22%Ca, 7.04%Ca, and 4.22%Mg doping, non- homogeneity is observed due to negative stiffness and very high values of Poisson’s ratio. The modification in structural, electronic, optical, elastic, and mechanical properties with Ca, Mg, and Sr-doping would make them an appropriate candidate for better optimization in UV filters due to the existence of their absorption spectra in the UV region.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • compound
  • phase
  • anisotropic
  • phase transition
  • band structure
  • bulk modulus