Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kumari, Suman

  • Google
  • 2
  • 7
  • 42

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study42citations
  • 2022Magnetotransport behavior of YBa2Cu3O7-δ–Sm0.55Sr0.45MnO3 superconducting-ferromagnetic composite thin filmscitations

Places of action

Chart of shared publication
Paswan, Sanjeet Kumar
1 / 1 shared
Kar, Manoranjan
1 / 3 shared
Pradhan, Lagen Kumar
1 / 1 shared
Raghav, D. S.
1 / 1 shared
Chauhan, Shital
1 / 1 shared
Anas, Mohd
1 / 2 shared
Siwach, P. K.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Paswan, Sanjeet Kumar
  • Kar, Manoranjan
  • Pradhan, Lagen Kumar
  • Raghav, D. S.
  • Chauhan, Shital
  • Anas, Mohd
  • Siwach, P. K.
OrganizationsLocationPeople

article

Electrical transport properties of nanocrystalline and bulk nickel ferrite using complex impedance spectroscopy: a comparative study

  • Kumari, Suman
  • Paswan, Sanjeet Kumar
  • Kar, Manoranjan
  • Pradhan, Lagen Kumar
Abstract

<jats:title>Abstract</jats:title><jats:p>In this work, the comparative study on the electrical transport properties of nanocrystalline nickel ferrite (NiFe<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>) and its bulk counterpart has been carried out in detail by using complex impedance spectroscopy in a wide range of frequencies (100 Hz–1 MHz) and temperatures (40 °C–320 °C). The dispersive nature of the dielectric constant and loss factor is explained by the Maxwell-Wagner model and Koop’s phenomenological theory. The value of the dielectric constant for nanocrystalline nickel ferrite is found to be more as compared to its bulk counterpart. The frequency variation dielectric permittivity is well fitted with the modified Debye formula, which suggests the presence of multiple relaxation processes. The temperature dependent ac conductivity follows Jonscher’s universal power law and reveals the presence of multiple transport mechanisms from small polaron hopping (SPH) to correlated barrier hopping (CBH) mechanism near 200 °C. The estimated values of Mott parameters are found to be satisfactory. Thermally activated relaxation phenomena have been confirmed by scaling curves of imaginary impedance (<jats:inline-formula><jats:tex-math> <?CDATA $Z^ $?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>Z</mml:mi><mml:mo accent="false">″</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psac87dcieqn1.gif" xlink:type="simple" /></jats:inline-formula>) and modulus (<jats:inline-formula><jats:tex-math> <?CDATA $M^ $?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>M</mml:mi><mml:mo accent="false">″</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psac87dcieqn2.gif" xlink:type="simple" /></jats:inline-formula>). The comparison between the <jats:inline-formula><jats:tex-math> <?CDATA $Z^ $?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>Z</mml:mi><mml:mo accent="false">″</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psac87dcieqn3.gif" xlink:type="simple" /></jats:inline-formula> and <jats:inline-formula><jats:tex-math> <?CDATA $M^ $?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>M</mml:mi><mml:mo accent="false">″</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psac87dcieqn4.gif" xlink:type="simple" /></jats:inline-formula> spectra indicates that both long-range and short-range movement of charge carriers contribute to dielectric relaxation with short-range charge carriers predominating at low temperatures while long-range charge carriers are dominating at high temperatures. Analysis of the semicircular arcs of Nyquist plot indicates the presence of grain boundary contribution to the electrical conduction process for the nanocrystalline sample at high temperatures. The non-Debye type of relaxation has been examined by stretching exponential factor (<jats:italic>β</jats:italic>) which has been estimated by fitting the modified KWW (Kohlrausch-Williams-Watts) equation to the imaginary electric modulus curve. The value of <jats:italic>β</jats:italic> is found to be strongly temperature dependent and its value for the nanocrystalline sample is less than that of the bulk system which is explained on the basis of dipole-dipole interaction.</jats:p>

Topics
  • impedance spectroscopy
  • grain
  • nickel
  • grain boundary
  • theory
  • dielectric constant
  • laser emission spectroscopy