Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chandamma, N.

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effects of γ-irradiation on AC electrical and impedance spectroscopy of Ni-Zn nano ferrites2citations

Places of action

Chart of shared publication
J., Shankaramurthy G.
1 / 1 shared
Kodihalli, Nagaraja K.
1 / 2 shared
Alsaiari, Abdulmohsen O.
1 / 1 shared
V., Santhosh Kumar M.
1 / 2 shared
Prasanna, Dr B. M.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • J., Shankaramurthy G.
  • Kodihalli, Nagaraja K.
  • Alsaiari, Abdulmohsen O.
  • V., Santhosh Kumar M.
  • Prasanna, Dr B. M.
OrganizationsLocationPeople

article

Effects of γ-irradiation on AC electrical and impedance spectroscopy of Ni-Zn nano ferrites

  • J., Shankaramurthy G.
  • Kodihalli, Nagaraja K.
  • Chandamma, N.
  • Alsaiari, Abdulmohsen O.
  • V., Santhosh Kumar M.
  • Prasanna, Dr B. M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Herein we report the effect of<jats:italic>γ</jats:italic>-irradiation on the structural and AC electrical properties of Ni-Zn nanoparticles<jats:inline-formula><jats:tex-math><?CDATA $N{i}_{1-x}Z{n}_{x}F{e}_{2}{O}_{4}(0 x 1)\,$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mi>N</mml:mi><mml:msub><mml:mrow><mml:mi>i</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi>Z</mml:mi><mml:msub><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:mi>F</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mfenced close=")" open="(" separators=""><mml:mrow><mml:mn>0</mml:mn><mml:mo>≤</mml:mo><mml:mi>x</mml:mi><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:mfenced></mml:mrow><mml:mspace width=".25em" /></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="psac850dieqn1.gif" xlink:type="simple" /></jats:inline-formula>synthesised via the citrate auto-combustion technique. The x-ray diffraction (XRD) analysis of the samples revealed a decreasing trend of the crystallite size with increasing concentration of Zn<jats:sup>2+</jats:sup>ions, and -irradiation alters the crystallite size for more Ni<jats:sup>2+</jats:sup>ion concentrations. The lattice constant was found to increase with Zn<jats:sup>2+</jats:sup>concentration, with the highest for x = 0.6. However, after irradiation, substantial change occurs. The lattice strain is greater for x = 1 as well as lower for x = 0.4. The observable modifications in the morphology of the samples upon irradiation are identified. The AC-electrical behaviour of the sample was studied before and after<jats:italic>γ</jats:italic>-irradiation in the frequency range of 1 MHz–23 MHz. Studies show that the dielectric constant increases on irradiation, whereas the dielectric loss and AC conductivity decline after irradiation. The dielectric relaxation changes from non-Debye to Havriliak–Negami relaxation, which is the significance of asymmetric broadness in the relaxation process. The collective AC electrical properties were signifies the radiation absorption response.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • x-ray diffraction
  • dielectric constant
  • combustion