Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Giantomassi, Matteo

  • Google
  • 3
  • 12
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Ab initio calculation of thermoelectric properties in 3d ferromagnets based on spin-dependent electron-phonon coupling1citations
  • 2022Erratum5citations
  • 2021Fröhlich polaron effective mass and localization length in cubic materials19citations

Places of action

Chart of shared publication
Ma, Xue
1 / 1 shared
Verstraete, Matthieu
3 / 13 shared
Gennaro, Marco Di
1 / 2 shared
Frost, Jarvist M.
2 / 21 shared
Côté, Michel
2 / 2 shared
Guster, Bogdan
2 / 3 shared
Martin, Bradley A. A.
2 / 2 shared
Brousseau-Couture, Véronique
2 / 2 shared
Abreu, Joao C. De
2 / 2 shared
Gonze, Xavier
2 / 13 shared
Melo, Pedro
2 / 4 shared
Miglio, Anna
2 / 3 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Ma, Xue
  • Verstraete, Matthieu
  • Gennaro, Marco Di
  • Frost, Jarvist M.
  • Côté, Michel
  • Guster, Bogdan
  • Martin, Bradley A. A.
  • Brousseau-Couture, Véronique
  • Abreu, Joao C. De
  • Gonze, Xavier
  • Melo, Pedro
  • Miglio, Anna
OrganizationsLocationPeople

article

Ab initio calculation of thermoelectric properties in 3d ferromagnets based on spin-dependent electron-phonon coupling

  • Giantomassi, Matteo
  • Ma, Xue
  • Verstraete, Matthieu
  • Gennaro, Marco Di
Abstract

<jats:title>Abstract</jats:title><jats:p>Crossed magneto-thermo-electric coefficients are central to novel sensors and spin(calori)tronic devices. Within the framework of Boltzmann’s transport theory, we calculate the resistivity and Seebeck coefficients of the most common 3d ferromagnetic metals: Fe, Co, and Ni. We use a fully first-principles variational approach, explicitly taking electron-phonon scattering into account. The electronic band structures, phonon dispersion curves, phonon linewidths, and transport spectral functions are reported, comparing with experimental data. Successive levels of approximation are discussed: constant relaxation time approximation, scattering for a non-magnetic configuration, then spin polarized calculations with and without spin orbit coupling (enabling spin-flips). Spin polarization and explicit electron-phonon coupling are found to be necessary to reach a correct qualitative picture: the effect of spin flipping is substantial&amp;#xD;for resistivity and very delicate for the Seebeck coefficient. The spin-dependent Seebeck effect is also predicted.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • resistivity
  • theory
  • band structure
  • spin polarization