Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamann, Sandra

  • Google
  • 3
  • 11
  • 15

Helmholtz-Zentrum Dresden-Rossendorf

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures5citations
  • 2022Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures5citations
  • 2022Microstructuring YbRh 2 Si 2 for resistance and noise measurements down to ultra-low temperatures5citations

Places of action

Chart of shared publication
Steppke, Alexander
3 / 5 shared
Saunders, John
3 / 7 shared
Lonsky, Martin
3 / 3 shared
Kopp, Marvin
3 / 3 shared
Brando, Manuel
3 / 5 shared
Kliemt, Kristin
3 / 7 shared
Krellner, Cornelius
3 / 8 shared
Levitin, Lev V.
3 / 5 shared
Mackenzie, Andrew P.
3 / 12 shared
König, Markus
3 / 10 shared
Müller, Jens
3 / 14 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Steppke, Alexander
  • Saunders, John
  • Lonsky, Martin
  • Kopp, Marvin
  • Brando, Manuel
  • Kliemt, Kristin
  • Krellner, Cornelius
  • Levitin, Lev V.
  • Mackenzie, Andrew P.
  • König, Markus
  • Müller, Jens
OrganizationsLocationPeople

article

Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures

  • Steppke, Alexander
  • Saunders, John
  • Lonsky, Martin
  • Kopp, Marvin
  • Brando, Manuel
  • Kliemt, Kristin
  • Hamann, Sandra
  • Krellner, Cornelius
  • Levitin, Lev V.
  • Mackenzie, Andrew P.
  • König, Markus
  • Müller, Jens
Abstract

<jats:title>Abstract</jats:title><jats:p>The discovery of superconductivity in the quantum critical Kondo-lattice system YbRh<jats:sub>2</jats:sub>Si<jats:sub>2</jats:sub> at an extremely low temperature of 2 mK has inspired efforts to perform high-resolution electrical resistivity measurements down to this temperature range in highly conductive materials. Here we show that control over the sample geometry by microstructuring using focused-ion-beam techniques allows to reach ultra-low temperatures and increase signal-to-noise ratios (SNRs) tenfold, without adverse effects to sample quality. In five experiments we show four-terminal sensing resistance and magnetoresistance measurements which exhibit sharp phase transitions at the Néel temperature, and Shubnikov–de-Haas (SdH) oscillations between 13 T and 18 T where we identified a new SdH frequency of 0.39 kT. The increased SNR allowed resistance fluctuation (noise) spectroscopy that would not be possible for bulk crystals, and confirmed intrinsic <jats:inline-formula><jats:tex-math><?CDATA $1/f$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mn>1</mml:mn><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>f</mml:mi></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpaca8c6ieqn1.gif" xlink:type="simple" /></jats:inline-formula>-type fluctuations. Under controlled strain, two thin microstructured samples exhibited a large increase of <jats:inline-formula><jats:tex-math><?CDATA $T_{N}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpaca8c6ieqn2.gif" xlink:type="simple" /></jats:inline-formula> from 67 mK up to 188 mK while still showing clear signatures of the phase transition and SdH oscillations. Superconducting quantum interference device-based thermal noise spectroscopy measurements in a nuclear demagnetization refrigerator down to 0.95 mK, show a sharp superconducting transition at <jats:inline-formula><jats:tex-math><?CDATA $T_{c} = 1.2$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi mathvariant="normal">c</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1.2</mml:mn></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpaca8c6ieqn3.gif" xlink:type="simple" /></jats:inline-formula> mK. These experiments demonstrate microstructuring as a powerful tool to investigate the resistance and the noise spectrum of highly conductive correlated metals over wide temperature ranges.</jats:p>

Topics
  • resistivity
  • phase
  • experiment
  • phase transition
  • superconductivity
  • superconductivity
  • spectroscopy