Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meinecke, Christoph

  • Google
  • 3
  • 11
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Molecular approach to semiconductors: a shift towards ecofriendly manufacturing and neuroinspired interfaces2citations
  • 2021Molecular motor-driven filament transport across three-dimensional, polymeric micro-junctions11citations
  • 2021Prolonged function and optimization of actomyosin motility for upscaled network-based biocomputation13citations

Places of action

Chart of shared publication
Parala, Harish
1 / 14 shared
Otto, Thomas
1 / 16 shared
Schmitz-Antoniak, Carolin
1 / 6 shared
Schulz, Stefan E.
1 / 31 shared
Blaudeck, Thomas
1 / 4 shared
Reuter, Danny
1 / 4 shared
Devi, Anjana
1 / 58 shared
Bickmann, Christopher
1 / 1 shared
Hann, Julia
1 / 1 shared
Monakhov, Kirill
1 / 3 shared
Moors, Marco
1 / 10 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Parala, Harish
  • Otto, Thomas
  • Schmitz-Antoniak, Carolin
  • Schulz, Stefan E.
  • Blaudeck, Thomas
  • Reuter, Danny
  • Devi, Anjana
  • Bickmann, Christopher
  • Hann, Julia
  • Monakhov, Kirill
  • Moors, Marco
OrganizationsLocationPeople

article

Prolonged function and optimization of actomyosin motility for upscaled network-based biocomputation

  • Meinecke, Christoph
Abstract

<jats:title>Abstract</jats:title><jats:p>Significant advancements have been made towards exploitation of naturally available molecular motors and their associated cytoskeletal filaments in nanotechnological applications. For instance, myosin motors and actin filaments from muscle have been used with the aims to establish new approaches in biosensing and network-based biocomputation. The basis for these developments is a version of the <jats:italic>in vitro</jats:italic> motility assay (IVMA) where surface-adsorbed myosin motors propel the actin filaments along suitably derivatized nano-scale channels on nanostructured chips. These chips are generally assembled into custom-made microfluidic flow cells. For effective applications, particularly in biocomputation, it is important to appreciably prolong function of the biological system. Here, we systematically investigated potentially critical factors necessary to achieve this, such as biocompatibility of different components of the flow cell, the degree of air exposure, assay solution composition and nanofabrication methods. After optimizing these factors we prolonged the function of actin and myosin in nanodevices for biocomputation from &lt;20 min to &gt;60 min. In addition, we demonstrated that further optimizations could increase motility run times to &gt;20 h. Of great importance for the latter development was a switch of glucose oxidase in the chemical oxygen scavenger system (glucose oxidase–glucose–catalase) to pyranose oxidase, combined with the use of blocking actin (non-fluorescent filaments that block dead motors). To allow effective testing of these approaches we adapted commercially available microfluidic channel slides, for the first time demonstrating their usefulness in the IVMA. As part of our study, we also demonstrate that myosin motor fragments can be stored at −80 °C for more than 10 years before use for nanotechnological purposes. This extended shelf-life is important for the sustainability of network-based biocomputation.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Oxygen
  • biocompatibility