People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katnagallu, Shyam
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023A machine learning framework for quantifying chemical segregation and microstructural features in atom probe tomography data
- 2023A Machine Learning Framework for Quantifying Chemical Segregation and Microstructural Features in Atom Probe Tomography Datacitations
- 2023A New Class of Cluster–Matrix Nanocomposite Made of Fully Miscible Components
- 2022Chemical redistribution and change in crystal lattice parameters during stress relaxation annealing of the AD730 superalloycitations
- 2021Nucleation mechanism of hetero-epitaxial recrystallization in wrought nickel-based superalloyscitations
- 2020Chemical segregation and precipitation at anti-phase boundaries in thermoelectric Heusler-Fe2VAlcitations
- 2020Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steelscitations
- 2020Current challenges and opportunities in microstructure-related properties of advanced high-strength steelscitations
- 2019Imaging individual solute atoms at crystalline imperfections in metalscitations
Places of action
Organizations | Location | People |
---|
article
Imaging individual solute atoms at crystalline imperfections in metals
Abstract
irectly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials’ properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni–Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature.