Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Birk, J. O.

  • Google
  • 1
  • 5
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Magnetic phase diagram of the quantum spin chain compound SrCo<sub>2</sub>V<sub>2</sub>O<sub>8</sub>: a single-crystal neutron diffraction study16citations

Places of action

Chart of shared publication
He, Z.
1 / 11 shared
Jellyman, E.
1 / 2 shared
Blackburn, E.
1 / 6 shared
Zaharko, O.
1 / 5 shared
Shen, L.
1 / 10 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • He, Z.
  • Jellyman, E.
  • Blackburn, E.
  • Zaharko, O.
  • Shen, L.
OrganizationsLocationPeople

article

Magnetic phase diagram of the quantum spin chain compound SrCo<sub>2</sub>V<sub>2</sub>O<sub>8</sub>: a single-crystal neutron diffraction study

  • He, Z.
  • Jellyman, E.
  • Birk, J. O.
  • Blackburn, E.
  • Zaharko, O.
  • Shen, L.
Abstract

<jats:title>Abstract</jats:title><jats:p>We explore magnetic order in the quantum spin chain compound SrCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub> up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, commensurate antiferromagnetic (C-AFM) order with modulation vector <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{C}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn1.gif" xlink:type="simple" /></jats:inline-formula> = (0, 0, 1) develops below <jats:italic>T</jats:italic><jats:sub>N</jats:sub> ≃ 5.0 K. Applying an external magnetic field (<jats:italic>H</jats:italic>∥<jats:italic>c</jats:italic> axis) destabilizes this C-AFM order, leading to an order-disorder transition between <jats:italic>T</jats:italic><jats:sub>N</jats:sub> and ∼1.5 K. Below 1.5 K, a commensurate to incommensurate (IC-AFM) transition occurs at 3.9 T, above which the magnetic reflections can be indexed by <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{IC}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">IC</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn2.gif" xlink:type="simple" /></jats:inline-formula> = (0, 0, 1 ± <jats:italic>δl</jats:italic>). The incommensurability <jats:italic>δl</jats:italic> scales monotonically with <jats:italic>H</jats:italic> until the IC-AFM order disappears around 7.0 T. Magnetic reflections modulated by <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{C}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn3.gif" xlink:type="simple" /></jats:inline-formula> emerge again at higher fields. While the characters of the C-AFM, IC-AFM and the emergent AFM order in SrCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub> appear to fit the descriptions of the Néel, longitudinal spin density wave and transverse AFM order observed in the related compound BaCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub>, our results also reveal several unique signatures that are not present in the latter, highlighting the inadequacy of mean-field theory in addressing the complex magnetic order in systems of this class.</jats:p>

Topics
  • density
  • compound
  • phase
  • theory
  • atomic force microscopy
  • neutron diffraction
  • phase diagram
  • ion chromatography