People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Blackburn, E.
Lund University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Concomitant interfacial spin fractal transformation and exchange bias in a magnetic shape memory alloy
- 2019Magnetic phase diagram of the quantum spin chain compound SrCo<sub>2</sub>V<sub>2</sub>O<sub>8</sub>: a single-crystal neutron diffraction studycitations
- 2019Magnetic phase diagram of the quantum spin chain compound SrCo2V2O8 : A single-crystal neutron diffraction studycitations
- 2019Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’citations
- 2016Magnetoresistance magnetometry of (Ni80Fe20)1-xlrx wires with varying anisotropic magnetoresistance ratiocitations
- 2012Dielectric properties of pulsed-laser deposited indium tin oxide thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Magnetic phase diagram of the quantum spin chain compound SrCo<sub>2</sub>V<sub>2</sub>O<sub>8</sub>: a single-crystal neutron diffraction study
Abstract
<jats:title>Abstract</jats:title><jats:p>We explore magnetic order in the quantum spin chain compound SrCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub> up to 14.9 T and down to 50 mK, using single-crystal neutron diffraction. Upon cooling in zero-field, commensurate antiferromagnetic (C-AFM) order with modulation vector <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{C}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn1.gif" xlink:type="simple" /></jats:inline-formula> = (0, 0, 1) develops below <jats:italic>T</jats:italic><jats:sub>N</jats:sub> ≃ 5.0 K. Applying an external magnetic field (<jats:italic>H</jats:italic>∥<jats:italic>c</jats:italic> axis) destabilizes this C-AFM order, leading to an order-disorder transition between <jats:italic>T</jats:italic><jats:sub>N</jats:sub> and ∼1.5 K. Below 1.5 K, a commensurate to incommensurate (IC-AFM) transition occurs at 3.9 T, above which the magnetic reflections can be indexed by <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{IC}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">IC</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn2.gif" xlink:type="simple" /></jats:inline-formula> = (0, 0, 1 ± <jats:italic>δl</jats:italic>). The incommensurability <jats:italic>δl</jats:italic> scales monotonically with <jats:italic>H</jats:italic> until the IC-AFM order disappears around 7.0 T. Magnetic reflections modulated by <jats:inline-formula><jats:tex-math> <?CDATA ${{{k}}}_{{{C}}}$?> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">k</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow></mml:msub></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="njpab2b7aieqn3.gif" xlink:type="simple" /></jats:inline-formula> emerge again at higher fields. While the characters of the C-AFM, IC-AFM and the emergent AFM order in SrCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub> appear to fit the descriptions of the Néel, longitudinal spin density wave and transverse AFM order observed in the related compound BaCo<jats:sub>2</jats:sub>V<jats:sub>2</jats:sub>O<jats:sub>8</jats:sub>, our results also reveal several unique signatures that are not present in the latter, highlighting the inadequacy of mean-field theory in addressing the complex magnetic order in systems of this class.</jats:p>