Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kluyver, Thomas

  • Google
  • 1
  • 12
  • 46

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction46citations

Places of action

Chart of shared publication
Hertel, Riccardo
1 / 6 shared
Hesjedal, Thorsten
1 / 10 shared
Ryan, Alexander Pepper
1 / 1 shared
Breth, Leoni
1 / 1 shared
Nehruji, Vanessa
1 / 2 shared
Fangohr, Hans
1 / 11 shared
Hatton, Peter
1 / 1 shared
Gary, Matthew Downing
1 / 1 shared
Lancaster, Tom
1 / 3 shared
Beg, Marijan
1 / 1 shared
Cortés-Ortuño, David
1 / 2 shared
Hovorka, Ondrej
1 / 2 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Hertel, Riccardo
  • Hesjedal, Thorsten
  • Ryan, Alexander Pepper
  • Breth, Leoni
  • Nehruji, Vanessa
  • Fangohr, Hans
  • Hatton, Peter
  • Gary, Matthew Downing
  • Lancaster, Tom
  • Beg, Marijan
  • Cortés-Ortuño, David
  • Hovorka, Ondrej
OrganizationsLocationPeople

article

Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interaction

  • Kluyver, Thomas
  • Hertel, Riccardo
  • Hesjedal, Thorsten
  • Ryan, Alexander Pepper
  • Breth, Leoni
  • Nehruji, Vanessa
  • Fangohr, Hans
  • Hatton, Peter
  • Gary, Matthew Downing
  • Lancaster, Tom
  • Beg, Marijan
  • Cortés-Ortuño, David
  • Hovorka, Ondrej
Abstract

Understanding the role of the Dzyaloshinskii–Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Néel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without the DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.

Topics
  • impedance spectroscopy
  • simulation
  • cobalt
  • interfacial