People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Beermann, Jonas
University of Southern Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2011Field enhancement and extraordinary optical transmission by tapered periodic slits in gold filmscitations
- 2011Localized field enhancements in two-dimensional V-groove metal arrayscitations
Places of action
Organizations | Location | People |
---|
article
Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films
Abstract
We investigate field enhancements by one-dimensional periodic arrays of tapered slits fabricated to a high quality (nm precision) using focused ion beam milling in a 180 nm-thick gold film. Tapering of periodic slits in metal was recently shown to boost the extraordinary optical transmission (EOT) exhibited by similar, but non-tapered, plasmonic structures. Here, both simulated and experimental reflection spectra, along with high-resolution two-photon luminescence (TPL) scanning optical images and simulated electric field plots of the metal slits, are compared, revealing good correspondence between spectral dependences and field intensity enhancements (FEs) estimated via the local TPL. Experimentally investigated structures had a fixed taper angle α=20.5° for two different widths, w=80 and 130 nm, having gaps g=25 and 65 nm, respectively, both fabricated at two different periods, Λ=500 and 700 nm. We attributed the obtained FE reaching ~110 to nanofocusing and resonant interference of counter-propagating plasmons by the periodic tapered gaps. As both simulated and experimentally achieved FEs depend on taper angle, gold film thickness, period and gap of the slit arrays, the resonances can actually be tuned in the wavelength range from visible to infrared, making this configuration promising for a wide range of practical applications, e.g. within surface-enhanced spectroscopies.