Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rus, Bedrich

  • Google
  • 1
  • 9
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Enhanced surface structuring by ultrafast XUV/NIR dual action6citations

Places of action

Chart of shared publication
Juha, Libor
1 / 4 shared
Toufarova, Martina
1 / 1 shared
Park, Seung Beom
1 / 1 shared
Hajkova, Vera
1 / 2 shared
Kim, Tae Keun
1 / 1 shared
Lee, Gae Hwang
1 / 1 shared
Jakubczak, Krzysztof
1 / 1 shared
Chalupsky, Jaromir
1 / 2 shared
Mocek, Tomas
1 / 3 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Juha, Libor
  • Toufarova, Martina
  • Park, Seung Beom
  • Hajkova, Vera
  • Kim, Tae Keun
  • Lee, Gae Hwang
  • Jakubczak, Krzysztof
  • Chalupsky, Jaromir
  • Mocek, Tomas
OrganizationsLocationPeople

article

Enhanced surface structuring by ultrafast XUV/NIR dual action

  • Juha, Libor
  • Rus, Bedrich
  • Toufarova, Martina
  • Park, Seung Beom
  • Hajkova, Vera
  • Kim, Tae Keun
  • Lee, Gae Hwang
  • Jakubczak, Krzysztof
  • Chalupsky, Jaromir
  • Mocek, Tomas
Abstract

Materials processing utilizing ultrashort near-infrared (NIR) laser pulses with duration in the range of tens to hundreds of femtoseconds (1 fs = 10(-15) s) has attracted a great deal of interest in the scientific and industrial world recently. Unfortunately, a number of materials that often exhibit great technological and scientific importance are transparent in NIR, making it very difficult to process them by laser radiation in this spectral range. Here, we present a new method for the efficient structuring of the surface of materials by applying femtosecond NIR laser pulses simultaneously with a weak extreme ultraviolet (XUV) beam, which leads to very strong radiation-matter interaction, bringing a dramatic increase in the surface processing speed. A laser system providing 5 mJ, 820 nm, 32 fs, 10 Hz pulses was used to generate high-order harmonics with the strongest spectral line at 21 nm and with a conversion efficiency of similar to 5%. The two beams were focused on the samples by using an off-axis paraboloidal multilayer mirror. As an example, we present the results of the surface nanostructuring of thin films of amorphous carbon and poly(methyl methacrylate) deposited on bulk substrates. We discuss the physical mechanisms that lead to the laser-induced periodic surface structures when our method is used.

Topics
  • impedance spectroscopy
  • surface
  • amorphous
  • Carbon
  • thin film