Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Oneal, Sabine

  • Google
  • 1
  • 9
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Properties of Nb <sub>x</sub> Ti<sub>(1−x)</sub>N thin films deposited on 300 mm silicon wafers for upscaling superconducting digital circuits2citations

Places of action

Chart of shared publication
Lozano, Daniel Pérez
1 / 1 shared
Valente-Feliciano, Anne-Marie
1 / 3 shared
Herr, Quentin
1 / 1 shared
Herr, Anna
1 / 1 shared
Kim, Min-Soo
1 / 1 shared
Tőkei, Zsolt
1 / 2 shared
Piao, Xiaoyu
1 / 1 shared
Hodges, Blake
1 / 1 shared
Soulié, Jean-Philippe
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Lozano, Daniel Pérez
  • Valente-Feliciano, Anne-Marie
  • Herr, Quentin
  • Herr, Anna
  • Kim, Min-Soo
  • Tőkei, Zsolt
  • Piao, Xiaoyu
  • Hodges, Blake
  • Soulié, Jean-Philippe
OrganizationsLocationPeople

article

Properties of Nb <sub>x</sub> Ti<sub>(1−x)</sub>N thin films deposited on 300 mm silicon wafers for upscaling superconducting digital circuits

  • Lozano, Daniel Pérez
  • Valente-Feliciano, Anne-Marie
  • Herr, Quentin
  • Herr, Anna
  • Kim, Min-Soo
  • Tőkei, Zsolt
  • Piao, Xiaoyu
  • Hodges, Blake
  • Soulié, Jean-Philippe
  • Oneal, Sabine
Abstract

<jats:title>Abstract</jats:title><jats:p>Scaling superconducting digital circuits requires fundamental changes in the current material set and fabrication process. The transition to 300 mm wafers and the implementation of advanced lithography are instrumental in facilitating mature CMOS processes, ensuring uniformity, and optimizing the yield. This study explores the properties of Nb<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(1−<jats:italic>x</jats:italic>)</jats:sub>N films fabricated by magnetron DC sputtering on 300 mm Si wafers. As a promising alternative to traditional Nb in device manufacturing, Nb<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(1−<jats:italic>x</jats:italic>)</jats:sub>N offers numerous advantages, including enhanced stability and scalability to smaller dimensions, in both processing and design. As a ternary material, Nb<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(1−<jats:italic>x</jats:italic>)</jats:sub>N allows engineering material parameters by changing deposition conditions. The engineered properties can be used to modulate device parameters through the stack and mitigate failure modes. We report characterization of Nb<jats:italic><jats:sub>x</jats:sub></jats:italic>Ti<jats:sub>(1−<jats:italic>x</jats:italic>)</jats:sub>N films at less than 2% thickness variability, 2.4% <jats:italic>T</jats:italic><jats:sub>c</jats:sub> variability and 3% composition variability. Film resistivity (140–375 Ωcm) shows a strong correlation with the film oxygen content, while the critical temperature <jats:italic>T</jats:italic><jats:sub>c</jats:sub> (4.6 K–14.1 K) is strongly affected by film stoichiometry and its microstructure has only a moderate effect on modifying <jats:italic>T</jats:italic><jats:sub>c</jats:sub>. Our results offer insights about the interplay between film stoichiometry, film microstructure and critical temperature.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • resistivity
  • thin film
  • Oxygen
  • laser emission spectroscopy
  • Silicon
  • oxygen content
  • lithography
  • critical temperature