Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonura, Marco

  • Google
  • 5
  • 27
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Thickness effect on superconducting properties of niobium films for radio-frequency cavity applications1citations
  • 2023Impact of deoxygenation/reoxygenation processes on the superconducting properties of commercial coated conductors4citations
  • 2023Effects of the oxygen source configuration on the superconducting properties of internally-oxidized internal-Sn Nb<sub>3</sub>Sn wires11citations
  • 2022Reverse coating technique for the production of Nb thin films on copper for superconducting radio-frequency applications2citations
  • 2010Dielectric properties of myoglobin at 10 GHz by microwave cavity perturbation measurementscitations

Places of action

Chart of shared publication
Pereira De Alemida Carlos, Carlota
1 / 1 shared
Senatore, Carmine
4 / 5 shared
Bianchi, Antonio
1 / 2 shared
Leith, Stewart
1 / 2 shared
Rosaz, Guillaume
2 / 3 shared
Venturiniâ Delsolaro, Walter
1 / 1 shared
Saule, Enora
1 / 1 shared
Cayado, Pablo
1 / 20 shared
Konstantopoulou, Konstantina
1 / 2 shared
Rijckaert, Hannes
1 / 25 shared
Lucas, Celia
1 / 1 shared
Bagni, Tommaso
2 / 2 shared
Alessandrini, Matteo
1 / 1 shared
Hopkins, S. C.
1 / 3 shared
Boutboul, T.
1 / 3 shared
Leboeuf, D.
1 / 10 shared
Bovone, Gianmarco
1 / 1 shared
Lonardo, Francesco
1 / 1 shared
Ballarino, A.
1 / 5 shared
Buta, Florin
1 / 1 shared
Baris, A.
1 / 2 shared
Calatroni, Sergio
1 / 5 shared
Amador, Lucia Lain
1 / 3 shared
Pfeiffer, S.
1 / 6 shared
Fonnesu, Dorothea
1 / 1 shared
Cupane, Antonio
1 / 4 shared
Schirò, G.
1 / 1 shared
Chart of publication period
2024
2023
2022
2010

Co-Authors (by relevance)

  • Pereira De Alemida Carlos, Carlota
  • Senatore, Carmine
  • Bianchi, Antonio
  • Leith, Stewart
  • Rosaz, Guillaume
  • Venturiniâ Delsolaro, Walter
  • Saule, Enora
  • Cayado, Pablo
  • Konstantopoulou, Konstantina
  • Rijckaert, Hannes
  • Lucas, Celia
  • Bagni, Tommaso
  • Alessandrini, Matteo
  • Hopkins, S. C.
  • Boutboul, T.
  • Leboeuf, D.
  • Bovone, Gianmarco
  • Lonardo, Francesco
  • Ballarino, A.
  • Buta, Florin
  • Baris, A.
  • Calatroni, Sergio
  • Amador, Lucia Lain
  • Pfeiffer, S.
  • Fonnesu, Dorothea
  • Cupane, Antonio
  • Schirò, G.
OrganizationsLocationPeople

article

Reverse coating technique for the production of Nb thin films on copper for superconducting radio-frequency applications

  • Bonura, Marco
  • Senatore, Carmine
  • Baris, A.
  • Calatroni, Sergio
  • Amador, Lucia Lain
  • Pfeiffer, S.
  • Fonnesu, Dorothea
  • Rosaz, Guillaume
Abstract

<jats:title>Abstract</jats:title><jats:p>In the framework of the Future Circular Collider Study, the development of thin-film coated superconducting radio-frequency copper cavities capable of providing higher accelerating fields (10–20 MV m<jats:sup>−1</jats:sup> against 5 MV m<jats:sup>−1</jats:sup> for the Large Hadron Collider) represents a major challenge. The method investigated here for the production of seamless niobium-coated copper cavities is based on the electroforming of the copper structure around a sacrificial aluminium mandrel that is pre-coated with a niobium thin film. The first feasibility study, applied to a flat aluminium disk mandrel, is presented. Protective precautions are taken towards the functional niobium film during the production process and it is shown that this technique can deliver well performing niobium films on a seamless copper substrate. This way, the non-trivial chemical treatments foreseen by the standard procedures (e.g. SUBU, EP) for the preparation of the copper surface to achieve the proper adhesion of the niobium layer are also avoided. The only major chemical treatment involved in the reverse-coating method is represented by the chemical dissolution of the aluminium mandrel, which has the advantage of not affecting the copper substrate and therefore the copper-niobium interface.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • thin film
  • aluminium
  • copper
  • niobium
  • coating method