People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ainslie, Md
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Record field in a 10 mm-period bulk high-temperature superconducting undulatorcitations
- 2023Record field in a 10 mm-period bulk high-temperature superconducting undulator
- 2022Simulation of mechanical stresses in reinforced REBaCuO ring bulks during pulsed-field magnetization
- 2020Numerical simulation of flux jump behavior in REBaCuO ring bulks with an inhomogeneous Jc profile during pulsed-field magnetizationcitations
- 2020Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets
- 2019Influence of Inner Diameter and Height of Ring-Shaped REBaCuO Bulks on Trapped Field and Mechanical Stress during Field-Cooled Magnetizationcitations
- 2019Design Optimization of a Hybrid Trapped Field Magnet Lens (HTFML)citations
- 2019Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnetscitations
- 2017Numerical modelling of iron-pnictide bulk superconductor magnetizationcitations
- 2017Numerical modelling of iron-pnictide bulk superconductor magnetisation
- 2016Pulsed Field Magnetization of Single-Grain Bulk YBCO Processed from Graded Precursor Powders
- 2015Pulsed Field Magnetization of Single-Grain Bulk YBCO Processed from Graded Precursor Powderscitations
- 2014Computation of the field in an axial gap, trapped-flux type superconducting electric machinecitations
Places of action
Organizations | Location | People |
---|
document
Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets
Abstract
Funder: Siemens AG Corporate Technology eAircraft ; Abstract: Trapped fields of over 20 T are, in principle, achievable in bulk, single-grain high temperature cuprate superconductors. The principle barriers to realizing such performance are, firstly, the large tensile stresses that develop during the magnetization of such trapped-field magnets as a result of the Lorentz force, which lead to brittle fracture of these ceramic-like materials at high fields and, secondly, catastrophic thermal instabilities as a result of flux movement during magnetization. Moreover, for a batch of samples nominally fabricated identically, the statistical nature of the failure mechanism means the best performance (i.e. trapped fields of over 17 T) cannot be attained reliably. The magnetization process, particularly to higher fields, also often damages the samples such that they cannot repeatedly trap high fields following subsequent magnetization. In this study, we report the sequential trapping of magnetic fields of ∼ 17 T, achieving 16.8 T at 26 K initially and 17.6 T at 22.5 K subsequently, in a stack of two Ag-doped GdBa2Cu3O7-δ bulk superconductor composites of diameter 24 mm reinforced with (1) stainless-steel laminations, and (2) shrink-fit stainless steel rings. A trapped field of 17.6 T is, in fact, comparable with the highest trapped fields reported to date for bulk superconducting magnets of any mechanical and chemical composition, and this was achieved using the first composite stack to be fabricated by this technique. These post-melt-processing treatments, which are relatively straightforward to implement, were used to improve both the mechanical properties and the thermal stability of the resultant composite structure, providing what we believe is a promising route to achieving reliably fields of over 20 T.