Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Demolon, P.

  • Google
  • 1
  • 13
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Coated conductor technology for the beamscreen chamber of future high energy circular colliders18citations

Places of action

Chart of shared publication
Krkotić, P.
1 / 1 shared
Ocallaghan, J.
1 / 1 shared
Zanin, D. A.
1 / 1 shared
Costa, Ângelo
1 / 1 shared
Perez, F.
1 / 1 shared
Taborelli, M.
1 / 9 shared
Pont, M.
1 / 1 shared
Royo, Joffre Gutierrez
1 / 1 shared
Neupert, H.
1 / 5 shared
Romanov, A.
1 / 3 shared
Calatroni, S.
1 / 4 shared
Pinto, P. C.
1 / 1 shared
Puig, T.
1 / 14 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Krkotić, P.
  • Ocallaghan, J.
  • Zanin, D. A.
  • Costa, Ângelo
  • Perez, F.
  • Taborelli, M.
  • Pont, M.
  • Royo, Joffre Gutierrez
  • Neupert, H.
  • Romanov, A.
  • Calatroni, S.
  • Pinto, P. C.
  • Puig, T.
OrganizationsLocationPeople

article

Coated conductor technology for the beamscreen chamber of future high energy circular colliders

  • Krkotić, P.
  • Ocallaghan, J.
  • Zanin, D. A.
  • Costa, Ângelo
  • Perez, F.
  • Taborelli, M.
  • Pont, M.
  • Royo, Joffre Gutierrez
  • Neupert, H.
  • Romanov, A.
  • Calatroni, S.
  • Pinto, P. C.
  • Demolon, P.
  • Puig, T.
Abstract

<jats:title>Abstract</jats:title><jats:p>The surface resistance of state-of-the-art REBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7−<jats:italic>x</jats:italic></jats:sub> coated conductors has been measured at 8 GHz versus temperature and magnetic field. We show that the surface resistance of REBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7−<jats:italic>x</jats:italic></jats:sub> strongly depends on the microstructure of the material. We have compared our results to those determined by the rigid fluxon model. The model gives a very good qualitative description of our data, opening the door to unravel the effect of material microstructure and vortex interactions on the surface resistance of high temperature superconductors. Moreover, it provides a powerful tool to design the best coated conductor architecture that minimizes the in-field surface resistance. We have found that the surface resistance of REBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7−<jats:italic>x</jats:italic></jats:sub> at 50 K and up to 9 T is lower than that of copper. This fact poses coated conductors as strong candidate to substitute copper as a beamscreen coating in CERN’s future circular collider. To this end we have also analyzed the secondary electron yield (SEY) of REBa<jats:sub>2</jats:sub>Cu<jats:sub>3</jats:sub>O<jats:sub>7−<jats:italic>x</jats:italic></jats:sub> and found a compatible coating made of sputtered Ti and amorphous carbon that decreases the SEY close to unity, a mandatory requirement for the beamscreen chamber of a circular collider in order to prevent the electron-cloud phenomenon.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • amorphous
  • Carbon
  • copper