People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ainslie, Md
King's College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Record field in a 10 mm-period bulk high-temperature superconducting undulatorcitations
- 2023Record field in a 10 mm-period bulk high-temperature superconducting undulator
- 2022Simulation of mechanical stresses in reinforced REBaCuO ring bulks during pulsed-field magnetization
- 2020Numerical simulation of flux jump behavior in REBaCuO ring bulks with an inhomogeneous Jc profile during pulsed-field magnetizationcitations
- 2020Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnets
- 2019Influence of Inner Diameter and Height of Ring-Shaped REBaCuO Bulks on Trapped Field and Mechanical Stress during Field-Cooled Magnetizationcitations
- 2019Design Optimization of a Hybrid Trapped Field Magnet Lens (HTFML)citations
- 2019Composite stacks for reliable > 17 T trapped fields in bulk superconductor magnetscitations
- 2017Numerical modelling of iron-pnictide bulk superconductor magnetizationcitations
- 2017Numerical modelling of iron-pnictide bulk superconductor magnetisation
- 2016Pulsed Field Magnetization of Single-Grain Bulk YBCO Processed from Graded Precursor Powders
- 2015Pulsed Field Magnetization of Single-Grain Bulk YBCO Processed from Graded Precursor Powderscitations
- 2014Computation of the field in an axial gap, trapped-flux type superconducting electric machinecitations
Places of action
Organizations | Location | People |
---|
article
Numerical modelling of iron-pnictide bulk superconductor magnetization
Abstract
<p>Iron-based superconductors exhibit a number of properties attractive for applications, including low anisotropy, high upper critical magnetic fields (H<sub>c2</sub>) in excess of 90 T and intrinsic critical current densities above 1 MA cm<sup>-2</sup> (0 T, 4.2 K). It was shown recently that bulk iron-pnictide superconducting magnets capable of trapping over 1 T (5 K) and 0.5 T (20 K) can be fabricated with fine-grain polycrystalline Ba<sub>0.6</sub>K<sub>0.4</sub>Fe<sub>2</sub>As<sub>2</sub> (Ba122). These Ba122 magnets were processed by a scalable, versatile and low-cost method using common industrial ceramic processing techniques. In this paper, a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, is used to investigate the magnetisation properties of such iron-pnictide bulk superconductors. Using the measured J<sub>c</sub>(B, T) characteristics of a small specimen taken from a bulk Ba122 sample, experimentally measured trapped fields are reproduced well for a single bulk, as well as a stack of bulks. Additionally, the influence of the geometric dimensions (thickness and diameter) on the trapped field is analysed, with a view of fabricating larger samples to increase the magnetic field available from such trapped field magnets. It is shown that, with current state-of-the-art superconducting properties, surface trapped fields >2 T could readily be achieved at 5 K (and >1 T at 20 K) with a sample of diameter 50 mm. Finally, an aspect ratio of between 1 and 1.5 for R/H (radius/thickness) would be an appropriate compromise between the accessible, surface trapped field and volume of superconducting material for bulk Ba122 magnets.</p>