Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Junior, Marcos Lopes Leal

  • Google
  • 1
  • 5
  • 5

Institut de Recherche Dupuy de Lôme

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effects5citations

Places of action

Chart of shared publication
Daniel, Laurent
1 / 33 shared
Barati, Mahmoud
1 / 10 shared
Pino, Laurent
1 / 6 shared
Saint-Sulpice, Luc
1 / 20 shared
Chirani, Shabnam Arbab
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Daniel, Laurent
  • Barati, Mahmoud
  • Pino, Laurent
  • Saint-Sulpice, Luc
  • Chirani, Shabnam Arbab
OrganizationsLocationPeople

article

Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effects

  • Daniel, Laurent
  • Junior, Marcos Lopes Leal
  • Barati, Mahmoud
  • Pino, Laurent
  • Saint-Sulpice, Luc
  • Chirani, Shabnam Arbab
Abstract

The well-known martensitic transformation is the main feature for almost all shape memory alloys (SMAs) usage. Meanwhile, the practical implementation of SMA in devices is not straightforward due to the evolution of their functional properties in operation. This evolution is mainly due to the different interactions between the martensite transformation (MT) or detwinning and mechanisms such as plasticity. Although these mechanisms are extensively studied by fine and precise techniques (e.g. high energy x-ray diffraction and transmission electron microscopy), their impact on a macroscopic level (usage scale) are not fully clarified. In this work, the effects of some of the most influential mechanisms in a NiTi alloy are investigated by using electric resistivity measurements at macroscopic scale. Distinct phase proportioning approaches are employed to analyze the martensitic transformation kinetic. It is found that, unlike elastic strains, plastic strains are a key influential factor on resistivity variations in SMAs. It is also shown that the use of an assumption of linearity between fraction of stress-induced martensite and strain transformation can lead to unrealistic interpretations of transformation mechanisms in NiTi wires.

Topics
  • impedance spectroscopy
  • polymer
  • resistivity
  • phase
  • x-ray diffraction
  • transmission electron microscopy
  • elasticity
  • plasticity
  • wire