People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pino, Laurent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Low cycle fatigue lifetime prediction of superplastic shape memory alloy structures ; Low cycle fatigue lifetime prediction of superplastic shape memory alloy structures: Application to endodontic instrumentscitations
- 2023Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effectscitations
- 2023Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effectscitations
- 2019R-phase shape memory alloy helical spring based actuators: Modeling and experimentscitations
- 2018Rotary bending fatigue analysis of shape memory alloyscitations
- 2015Mechanical behavior of a NiTi endodontic file during insertion in an anatomic root canal using numerical simulationscitations
Places of action
Organizations | Location | People |
---|
article
Electric resistivity evolution in NiTi alloys under thermomechanical loading: phase proportioning, elasticity and plasticity effects
Abstract
The well-known martensitic transformation is the main feature for almost all shape memory alloys (SMAs) usage. Meanwhile, the practical implementation of SMA in devices is not straightforward due to the evolution of their functional properties in operation. This evolution is mainly due to the different interactions between the martensite transformation (MT) or detwinning and mechanisms such as plasticity. Although these mechanisms are extensively studied by fine and precise techniques (e.g. high energy x-ray diffraction and transmission electron microscopy), their impact on a macroscopic level (usage scale) are not fully clarified. In this work, the effects of some of the most influential mechanisms in a NiTi alloy are investigated by using electric resistivity measurements at macroscopic scale. Distinct phase proportioning approaches are employed to analyze the martensitic transformation kinetic. It is found that, unlike elastic strains, plastic strains are a key influential factor on resistivity variations in SMAs. It is also shown that the use of an assumption of linearity between fraction of stress-induced martensite and strain transformation can lead to unrealistic interpretations of transformation mechanisms in NiTi wires.