Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shirazi, Paymon

  • Google
  • 1
  • 11
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Magnetic state switching in FeGa microstructures9citations

Places of action

Chart of shared publication
Goiriena-Goikoetxea, Maite
1 / 2 shared
Xiao, Zhuyun
1 / 3 shared
Lynch, Christopher
1 / 1 shared
Candler, Rob
1 / 1 shared
Carman, Gregory P.
1 / 3 shared
Chang, Jane P.
1 / 2 shared
Jesus, Michael Guevara De
1 / 1 shared
Acosta, Adrian
1 / 1 shared
Panduranga, Mohanchandra K.
1 / 1 shared
Chopdekar, Rajesh
1 / 2 shared
Bokor, Jeffrey
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Goiriena-Goikoetxea, Maite
  • Xiao, Zhuyun
  • Lynch, Christopher
  • Candler, Rob
  • Carman, Gregory P.
  • Chang, Jane P.
  • Jesus, Michael Guevara De
  • Acosta, Adrian
  • Panduranga, Mohanchandra K.
  • Chopdekar, Rajesh
  • Bokor, Jeffrey
OrganizationsLocationPeople

article

Magnetic state switching in FeGa microstructures

  • Goiriena-Goikoetxea, Maite
  • Xiao, Zhuyun
  • Lynch, Christopher
  • Candler, Rob
  • Carman, Gregory P.
  • Chang, Jane P.
  • Jesus, Michael Guevara De
  • Acosta, Adrian
  • Shirazi, Paymon
  • Panduranga, Mohanchandra K.
  • Chopdekar, Rajesh
  • Bokor, Jeffrey
Abstract

<jats:title>Abstract</jats:title><jats:p>This work demonstrates that magnetoelectric composite heterostructures can be designed at the length scale of 10<jats:italic>µ</jats:italic>ms that can be switched from a magnetized state to a vortex state, effectively switching the magnetization off, using electric field induced strain. This was accomplished using thin film magnetoelectric heterostructures of Fe<jats:sub>81.4</jats:sub>Ga<jats:sub>18.6</jats:sub>on a single crystal (011) [Pb(Mg<jats:sub>1/3</jats:sub>Nb<jats:sub>2/3</jats:sub>)O<jats:sub>3</jats:sub>]<jats:sub>0.68</jats:sub>-[PbTiO<jats:sub>3</jats:sub>]<jats:sub>0.32</jats:sub>(PMN-32PT) ferroelectric substrate. The heterostructures were tripped from a multi-domain magnetized state to a flux closure vortex state using voltage induced strain in a piezoelectric substrate. FeGa heterostructures were deposited on a Si-substrate for superconducting quantum interference device magnetometry characterization of the magnetic properties. The magnetoelectric coupling of a FeGa continuous film on PMN-32PT was characterized using a magneto optical Kerr effect magnetometer with bi-axial strain gauges, and magnetic multi-domain heterostructures were imaged using x-ray magnetic circular dichroism—photoemission electron microscopy during the transition to the vortex state. The domain structures were modelled using MuMax<jats:sup>3</jats:sup>, a micromagnetics code, and compared with observations. The results provide considerable insight into designing magnetoelectric heterostructures that can be switched from an ‘on’ state to an ‘off’ state using electric field induced strain.</jats:p>

Topics
  • single crystal
  • thin film
  • composite
  • mass spectrometry
  • electron microscopy
  • magnetization