People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wießner, Sven
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Unlocking the Potential of Lignin: Towards a Sustainable Solution for Tire Rubber Compound Reinforcementcitations
- 2022Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical properties
- 2022Thermoelectric Performance of Polypropylene/Carbon Nanotube/Ionic Liquid Composites and Its Dependence on Electron Beam Irradiationcitations
- 2021First-Time Investigations on Cavitation in Rubber Parts Subjected to Constrained Tension Using In Situ Synchrotron X-Ray Microtomography (SRμCT)citations
- 2021Treasuring waste lignin as superior reinforcing filler in high cis-polybutadiene rubbercitations
- 2021Fundamentals and working mechanisms of artificial muscles with textile application in the loopcitations
- 2021A new strategy to improve viscoelasticity, crystallization and mechanical properties of polylactidecitations
- 2021Improved rheology, crystallization, and mechanical performance of PLA/mPCL blends prepared by electron-induced reactive processingcitations
- 2020Friction, abrasion and crack growth behavior of in-situ and ex-situ silica filled rubber compositescitations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer composites.citations
- 2018Development and testing of controlled adaptive fiber-reinforced elastomer compositescitations
- 2018Blending In Situ Polyurethane-Urea with Different Kinds of Rubber: Performance and Compatibility Aspectscitations
- 2017Strong Strain Sensing Performance of Natural Rubber Nanocompositescitations
- 2017Benefits of hybrid nano-filler networking between organically modified Montmorillonite and carbon nanotubes in natural rubber: Experiments and theoretical interpretations
- 2017Temperature-Dependent Reinforcement of Hydrophilic Rubber Using Ice Crystals
- 2006Effects of interface reactions in complatibilised ground tyre rubber polypropylene etastomeric alloyscitations
Places of action
Organizations | Location | People |
---|
document
Fundamentals and working mechanisms of artificial muscles with textile application in the loop
Abstract
<p>Natural muscles, that convert chemical energy derived from glucose into mechanical and thermal energy, are capable of performing complex movements. This natural muscle power was the only way to perform mechanical work in a targeted manner for millions of years. In the course of thousands of years of technical development, mankind has succeeded in harnessing various physical and chemical phenomena to drive specific mechanical processes. Wind and water power, steam and combustion engines or electric motors are just a few examples. However, in order to make the diversity and flexibility of natural motion patterns usable for machines, attempts have been made for many years to develop artificial muscles. These man-made smart materials or structures are able to react to environmental conditions by significantly changing their shape or size. For the design of effective artificial muscles that closely resemble the natural original, the usage of textile technology offers great advantages. By means of weaving, individual actuators can be parallelized, which enables the transmission of greater forces. By knitting the maximum stretching performance can be enhanced by combining the intrinsic stretching capacity of the actuators with the structural-geometric stretching capacity of the fabric. Furthermore textile production techniques are well suited for the requirement-specific, individual placement of actuators in order to achieve the optimal geometry for the respective needs in every load case. Ongoing technical development has created fiber based and non-fibrous artificial muscles that are capable of mimicking and even out-performing their biological prodigy. Meanwhile, a large number of partly similar, but also very different functional principles and configurations were developed, each with its own specific characteristics. This paper provides an overview of the relevant and most promising technical approaches for realizing artificial muscles, classifies them to specific material types and explains the mechanisms used as well as the possible textile applications.</p>