Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malinowski, Pawel H.

  • Google
  • 2
  • 4
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Ultrasonic guided wave-based debond identification in a GFRP plate with L-stiffener13citations
  • 2021Ultrasonic Guided Wave Signal Based Nondestructive Testing of a Bonded Composite Structure Using Piezoelectric Transducers14citations

Places of action

Chart of shared publication
Balasubramaniam, Kaleeswaran
2 / 3 shared
Sikdar, Shirsendu
2 / 29 shared
Wandowski, Tomasz
1 / 5 shared
Fiborek, Piotr
1 / 4 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Balasubramaniam, Kaleeswaran
  • Sikdar, Shirsendu
  • Wandowski, Tomasz
  • Fiborek, Piotr
OrganizationsLocationPeople

article

Ultrasonic guided wave-based debond identification in a GFRP plate with L-stiffener

  • Balasubramaniam, Kaleeswaran
  • Sikdar, Shirsendu
  • Malinowski, Pawel H.
  • Wandowski, Tomasz
Abstract

<p>This paper presents a robust assessment of debond in a glass fibre-reinforced polymer composite structure with L-stiffener attachment. Towards this, the ultrasonic guided wave (GW) propagation based laboratory experiments have been carried out on a stiffened composite panel with piezoelectric transducers for the excitation of GWs and a scanning laser Doppler vibrometer for sensing the GW propagation. To study the changes caused by the stiffener and debond a signal processing based multi-point analysis has been carried out. The proposed methodology consists of two steps. Step 1 using the full wavefield root mean square energy map-based approach to check the presence of debond. Step 2 using point-wise measurements to study debond localization and size estimation using a baseline free signal coefficient difference algorithm (SCDA). The proposed processing approaches are applied for an in-depth analysis of the experimental signals that provide information about the interaction of GWs with stiffener and debond. The mentioned approaches take advantage of the asymmetry caused by the damage. For the applied SCDA methodology there is no need for full-wavefield measurements, healthy case measurements, as only a few measurement points can be enough for the assessment of stiffener debond in such structures.</p>

Topics
  • impedance spectroscopy
  • polymer
  • experiment
  • glass
  • glass
  • composite
  • ultrasonic