People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Perriman, Adam Willis
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Flax fibre reinforced alginate poloxamer hydrogelcitations
- 2023A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug- and radiation-responsecitations
- 2023Bienzymatic Generation of Interpenetrating Polymer Networked Engineered Living Materials with Shape Changing Propertiescitations
- 2023Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphscitations
- 2022The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) compositescitations
- 2022The Design of 4D-Printed Hygromorphscitations
- 2021Multiphase lattice metamaterials with enhanced mechanical performancecitations
- 2021Three-Dimensional Printable Enzymatically Active Plasticscitations
- 2020Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite nanofibrous Substratescitations
- 2020Cactus-based solids and bio-composites for energy dissipation in defence and biomedical applications.
- 2020Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materialscitations
- 2019A Composite Hydrogel Scaffold Permits Self‐Organization and Matrix Deposition by Cocultured Human Glomerular Cellscitations
- 2019Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTEcitations
- 2017Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterialscitations
- 2014Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructscitations
- 2012Polymer/nucleotide droplets as bio-inspired functional micro-compartmentscitations
- 2009Membrane stabilization and transformation in organoclay-vesicle hybrid constructscitations
Places of action
Organizations | Location | People |
---|
article
Multiphase lattice metamaterials with enhanced mechanical performance
Abstract
We describe here the quasi-static crushing behavior of novel classes of multiphase (hybrid) hierarchical lattice metamaterials. The first class is represented by a hybrid architecture combining a hierarchical honeycomb with polyurethane foam filler, while the second is a multiphase structure produced by injecting an alginate hydrogel into the hierarchical voids of the honeycomb metamaterial. Twelve different auxetic (i.e., negative Poisson’s ratio) and non-auxetic metamaterial architectures have been 3D printed and subjected to edgewise compression crushing loading. A parametric numerical analysis has been also performed using validated Finite Element models to identify best metamaterial architecture configurations. Configurations filled with the hydrogel showed a significant stabilization of the deformation mechanism during large deformation edgewise compression. The use of metamaterials designs with internal slots and round in the ribs also filled by polyurethane rigid (PUR) semi-reticulated foam feature however significant increases in terms of specific stiffness, mean crushing force, strength and energy absorption. The enhancement is particularly evident for the hybrid lattice metamaterials auxetic configurations.