Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dinh, Tin Trong

  • Google
  • 1
  • 4
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Electrical Joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes25citations

Places of action

Chart of shared publication
Junger, Dominik
1 / 6 shared
Tzounis, Lazaros
1 / 15 shared
Mechtcherine, Viktor
1 / 60 shared
Liebscher, Marco
1 / 23 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Junger, Dominik
  • Tzounis, Lazaros
  • Mechtcherine, Viktor
  • Liebscher, Marco
OrganizationsLocationPeople

article

Electrical Joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes

  • Dinh, Tin Trong
  • Junger, Dominik
  • Tzounis, Lazaros
  • Mechtcherine, Viktor
  • Liebscher, Marco
Abstract

In the study at hand the Joule heating effect of electrically conductive cementitious nanocomposites filled with different loadings of multi-walled carbon nanotubes (MWCNTs) is investigated. Nanofiller dispersions were initially prepared via ultrasonication in deionized water (d-H2O) utilising a commercial superplasticizer as surfactant. Electrically percolated nanocomposites were fabricated via shear mixing and subsequent casting into moulds. Storing the prepared samples under different humid conditions enabled explanation of the role of water content as well as cement age on Joule heating performance. All prepared specimens were investigated at ages of 3 d, 7 d and 28 d by applying two different DC bias voltages. Infrared-thermography (IR-T) images were recorded after 1 min, 5 min and 10 min in order to visualize the differences in the Joule heating effect as a function of time, keeping contact with the DC bias voltage. The observed results showed a significant dependency of the Joule heating effect on water content as well as on filler concentration. Moreover, increasing cement age provided more effective electrical heating. This work elucidates the complexity of the electrical heating phenomena occurring in cementitious/MWCNT nanocomposites via the well-known Joule heating effect because it contributes to the understanding of the underlying mechanism. The main parameters used and the corresponding results are envisaged to be applicable for large-scale, heatable concrete structures in future respecting buildings temperature, aerial control, de-icing, thermal management, and better energy efficiency, etc.

Topics
  • nanocomposite
  • impedance spectroscopy
  • dispersion
  • Carbon
  • nanotube
  • cement
  • casting
  • surfactant
  • thermography
  • ultrasonication
  • percolated