People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Valdez-Nava, Zarel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Dielectric Breakdown of Alumina: Effect of Mechanical and Electrical Prestress
- 2024Effect of Cracks on the Dielectric Breakdown of Polymers and Ceramics
- 2024Electrical Characteristics and Surface Topography of Elastomeric Nanocomposites Based on Multi-walled Carbon Nanotubes and Poly(Dimethylsiloxane)
- 2023Tuning electrical conductivity in AlN-based ceramics by incorporating graphenecitations
- 2023Hydrogels with electrically conductive nanomaterials for biomedical applicationscitations
- 2022Dielectrophoretic Chain Assembly of BaTiO3 Particles in Silicone Gel Composites
- 2022Innovative ceramic-matrix composite substrates with tunable electrical conductivity for high-power applicationscitations
- 2022A Comparative Study of the Electrical and Electromechanical Responses of Carbon Nanotube/Polypropylene Composites in Alternating and Direct Currentcitations
- 2020Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensingcitations
- 2015Online Optical and Dielectric Monitoring of Anisotropic Epoxy / BaTiO3 Composite Formation Tailored by Dielectrophoresiscitations
- 2013Co-fired AlN–TiN assembly as a new substrate technology for high-temperature power electronics packagingcitations
- 2011Structural characterization of dense reduced BaTiO3 and Ba0.95La0.05TiO3 nanoceramics showing colossal dielectric valuescitations
- 2011Microstructure of Ba1−xLaxTiO3−δ ceramics sintered by Spark Plasma Sinteringcitations
- 2009Lanthanum doped barium titanate materials with optimized properties for high capacity materials application.
- 2009Lanthanum doped barium titanate materials with optimized properties for high capacity materials application
Places of action
Organizations | Location | People |
---|
article
Electro-mechanical properties of thermoplastic polyurethane films and tubes modified by hybrid carbon nanostructures for pressure sensing
Abstract
<jats:title>Abstract</jats:title><jats:p>Electrical and piezoresistive properties of hybrid nanocomposite films and tubes made of a segmented aliphatic polyurethane modified with multilayer graphene sheets (MLGSs), multiwall carbon nanotubes (MWCNTs), and hybrid mixtures of both, were investigated. Hybrid nanocomposites were fabricated at a total weight concentration (<jats:inline-formula><jats:tex-math><?CDATA ${ _T}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>T</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn1.gif" xlink:type="simple" /></jats:inline-formula>) of 5 wt.%, with relative weight concentration of MLGSs with respect to MWCNTs (<jats:inline-formula><jats:tex-math><?CDATA ${ _R})$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn2.gif" xlink:type="simple" /></jats:inline-formula> of 25%, 50% and 75%. The electrical conductivity of these films is dominated by the MWCNT network, observing electrical MLGS-MWCNT collaborative effects only for <jats:inline-formula><jats:tex-math><?CDATA ${ _R}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn3.gif" xlink:type="simple" /></jats:inline-formula> = 25%. Dielectric impedance spectroscopy indicates that the nanocomposites display capacitive effects at frequencies higher than tens of Hz, which is explained by interfacial polarization. The burst pressure and circumferential stiffness of internally pressurized tubes fabricated from these films is slightly higher for tubes containing only MWCNTs. The strain fields in the pressurized tubes, determined by digital image correlation, showed localized strain gradients, and the piezoresistive response of the electro-conductive tubes was nonlinear. The highest pressure sensitivity factor (4.59 kPa<jats:sup>−1</jats:sup>) was obtained for hybrid nanocomposite tubes with <jats:inline-formula><jats:tex-math><?CDATA ${ _R}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Φ</mml:mi><mml:mi>R</mml:mi></mml:msub></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="smsaba9e6ieqn4.gif" xlink:type="simple" /></jats:inline-formula> = 25%.</jats:p>